The promise of implementing machine learning in earthquake engineering: A state-of-the-art review

2020 ◽  
Vol 36 (4) ◽  
pp. 1769-1801 ◽  
Author(s):  
Yazhou Xie ◽  
Majid Ebad Sichani ◽  
Jamie E Padgett ◽  
Reginald DesRoches

Machine learning (ML) has evolved rapidly over recent years with the promise to substantially alter and enhance the role of data science in a variety of disciplines. Compared with traditional approaches, ML offers advantages to handle complex problems, provide computational efficiency, propagate and treat uncertainties, and facilitate decision making. Also, the maturing of ML has led to significant advances in not only the main-stream artificial intelligence (AI) research but also other science and engineering fields, such as material science, bioengineering, construction management, and transportation engineering. This study conducts a comprehensive review of the progress and challenges of implementing ML in the earthquake engineering domain. A hierarchical attribute matrix is adopted to categorize the existing literature based on four traits identified in the field, such as ML method, topic area, data resource, and scale of analysis. The state-of-the-art review indicates to what extent ML has been applied in four topic areas of earthquake engineering, including seismic hazard analysis, system identification and damage detection, seismic fragility assessment, and structural control for earthquake mitigation. Moreover, research challenges and the associated future research needs are discussed, which include embracing the next generation of data sharing and sensor technologies, implementing more advanced ML techniques, and developing physics-guided ML models.

2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

Abstract This paper provides the state of the art of data science in economics. Through a novel taxonomy of applications and methods advances in data science are investigated. The data science advances are investigated in three individual classes of deep learning models, ensemble models, and hybrid models. Application domains include stock market, marketing, E-commerce, corporate banking, and cryptocurrency. Prisma method, a systematic literature review methodology is used to ensure the quality of the survey. The findings revealed that the trends are on advancement of hybrid models as more than 51% of the reviewed articles applied hybrid model. On the other hand, it is found that based on the RMSE accuracy metric, hybrid models had higher prediction accuracy than other algorithms. While it is expected the trends go toward the advancements of deep learning models.


2016 ◽  
Vol 21 (3) ◽  
pp. 525-547 ◽  
Author(s):  
Scott Tonidandel ◽  
Eden B. King ◽  
Jose M. Cortina

Advances in data science, such as data mining, data visualization, and machine learning, are extremely well-suited to address numerous questions in the organizational sciences given the explosion of available data. Despite these opportunities, few scholars in our field have discussed the specific ways in which the lens of our science should be brought to bear on the topic of big data and big data's reciprocal impact on our science. The purpose of this paper is to provide an overview of the big data phenomenon and its potential for impacting organizational science in both positive and negative ways. We identifying the biggest opportunities afforded by big data along with the biggest obstacles, and we discuss specifically how we think our methods will be most impacted by the data analytics movement. We also provide a list of resources to help interested readers incorporate big data methods into their existing research. Our hope is that we stimulate interest in big data, motivate future research using big data sources, and encourage the application of associated data science techniques more broadly in the organizational sciences.


2021 ◽  
Author(s):  
Bing Xue ◽  
Mengjie Zhang ◽  
William Browne ◽  
X Yao

Feature selection is an important task in data miningand machine learning to reduce the dimensionality of the dataand increase the performance of an algorithm, such as a clas-sification algorithm. However, feature selection is a challengingtask due mainly to the large search space. A variety of methodshave been applied to solve feature selection problems, whereevolutionary computation techniques have recently gained muchattention and shown some success. However, there are no compre-hensive guidelines on the strengths and weaknesses of alternativeapproaches. This leads to a disjointed and fragmented fieldwith ultimately lost opportunities for improving performanceand successful applications. This paper presents a comprehensivesurvey of the state-of-the-art work on evolutionary computationfor feature selection, which identifies the contributions of thesedifferent algorithms. In addition, current issues and challengesare also discussed to identify promising areas for future research. Index Terms—Evolutionary computation, feature selection,classification, data mining, machine learning. © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2021 ◽  
Vol 11 (6) ◽  
pp. 7824-7835
Author(s):  
H. Alalawi ◽  
M. Alsuwat ◽  
H. Alhakami

The importance of classification algorithms has increased in recent years. Classification is a branch of supervised learning with the goal of predicting class labels categorical of new cases. Additionally, with Coronavirus (COVID-19) propagation since 2019, the world still faces a great challenge in defeating COVID-19 even with modern methods and technologies. This paper gives an overview of classification algorithms to provide the readers with an understanding of the concept of the state-of-the-art classification algorithms and their applications used in the COVID-19 diagnosis and detection. It also describes some of the research published on classification algorithms, the existing gaps in the research, and future research directions. This article encourages both academics and machine learning learners to further strengthen the basis of classification methods.


2021 ◽  
Author(s):  
Bing Xue ◽  
Mengjie Zhang ◽  
William Browne ◽  
X Yao

Feature selection is an important task in data miningand machine learning to reduce the dimensionality of the dataand increase the performance of an algorithm, such as a clas-sification algorithm. However, feature selection is a challengingtask due mainly to the large search space. A variety of methodshave been applied to solve feature selection problems, whereevolutionary computation techniques have recently gained muchattention and shown some success. However, there are no compre-hensive guidelines on the strengths and weaknesses of alternativeapproaches. This leads to a disjointed and fragmented fieldwith ultimately lost opportunities for improving performanceand successful applications. This paper presents a comprehensivesurvey of the state-of-the-art work on evolutionary computationfor feature selection, which identifies the contributions of thesedifferent algorithms. In addition, current issues and challengesare also discussed to identify promising areas for future research. Index Terms—Evolutionary computation, feature selection,classification, data mining, machine learning. © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

This paper provides the state of the art of data science in economics. Through a novel taxonomy of applications and methods advances in data science are investigated. The data science advances are investigated in three individual classes of deep learning models, ensemble models, and hybrid models. Application domains include stock market, marketing, E-commerce, corporate banking, and cryptocurrency. Prisma method, a systematic literature review methodology is used to ensure the quality of the survey. The findings revealed that the trends are on advancement of hybrid models as more than 51% of the reviewed articles applied hybrid model. On the other hand, it is found that based on the RMSE accuracy metric, hybrid models had higher prediction accuracy than other algorithms. While it is expected the trends go toward the advancements of deep learning models.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


Author(s):  
Mara Madaleno ◽  
João Lourenço Marques ◽  
Muhammad Tufail

Economics and business are a great background for data science provided econometricians and data scientists are sets with an intersection, although remaining unknown. In econometrics, data mining is somewhat a monstrous word, a field that traditionally seeks causal inference and results in interpretability. When we go deeper into what data science usually is, the boundaries between more traditional econometrics and even statistics and the hip and cool machine learning become shorter. In economics and business, we find examples and applications of simple and advanced data science techniques. This chapter intends to provide state-of-the-art data science applications in economics and business. The review and bibliometric analysis are limited to the research articles published through Elsevier Scopus. Results allowed the authors to conclude that despite the number of already existent research, a lot more remains to be explored joining both fields of knowledge, data since, and economics and business. This analysis allowed the authors to identify further possible avenues of research critically.


Sign in / Sign up

Export Citation Format

Share Document