Long-term deprivation of gonadal hormone accelerates brain aging in mice

2011 ◽  
Vol 33 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Yan Hou ◽  
Xiu-Qi Bao ◽  
Huai-Ling Wei ◽  
Yuan Luo ◽  
Geng-Tao Liu
Keyword(s):  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Martina Reutzel ◽  
Rekha Grewal ◽  
Carmina Silaidos ◽  
Jens Zotzel ◽  
Stefan Marx ◽  
...  

Aging represents a major risk factor for developing neurodegenerative diseases such as Alzheimer’s disease (AD). As components of the Mediterranean diet, olive polyphenols may play a crucial role in the prevention of AD. Since mitochondrial dysfunction acts as a final pathway in both brain aging and AD, respectively, the effects of a mixture of highly purified olive secoiridoids were tested on cognition and ATP levels in a commonly used mouse model for brain aging. Over 6 months, female NMRI mice (12 months of age) were fed with a blend containing highly purified olive secoiridoids (POS) including oleuropein, hydroxytyrosol and oleurosid standardized for 50 mg oleuropein/kg diet (equivalent to 13.75 mg POS/kg b.w.) or the study diet without POS as control. Mice aged 3 months served as young controls. Behavioral tests showed deficits in cognition in aged mice. Levels of ATP and mRNA levels of NADH-reductase, cytochrome-c-oxidase, and citrate synthase were significantly reduced in the brains of aged mice indicating mitochondrial dysfunction. Moreover, gene expression of Sirt1, CREB, Gap43, and GPx-1 was significantly reduced in the brain tissue of aged mice. POS-fed mice showed improved spatial working memory. Furthermore, POS restored brain ATP levels in aged mice which were significantly increased. Our results show that a diet rich in purified olive polyphenols has positive long-term effects on cognition and energy metabolism in the brain of aged mice.


Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 176 ◽  
Author(s):  
Sung Nam ◽  
Misun Seo ◽  
Jin-Seok Seo ◽  
Hyewhon Rhim ◽  
Sang-Soep Nahm ◽  
...  

Ascorbic acid is essential for normal brain development and homeostasis. However, the effect of ascorbic acid on adult brain aging has not been determined. Long-term treatment with high levels of D-galactose (D-gal) induces brain aging by accumulated oxidative stress. In the present study, mice were subcutaneously administered with D-gal (150 mg/kg/day) for 10 weeks; from the seventh week, ascorbic acid (150 mg/kg/day) was orally co-administered for four weeks. Although D-gal administration alone reduced hippocampal neurogenesis and cognitive functions, co-treatment of ascorbic acid with D-gal effectively prevented D-gal-induced reduced hippocampal neurogenesis through improved cellular proliferation, neuronal differentiation, and neuronal maturation. Long-term D-gal treatment also reduced expression levels of synaptic plasticity-related markers, i.e., synaptophysin and phosphorylated Ca2+/calmodulin-dependent protein kinase II, while ascorbic acid prevented the reduction in the hippocampus. Furthermore, ascorbic acid ameliorated D-gal-induced downregulation of superoxide dismutase 1 and 2, sirtuin1, caveolin-1, and brain-derived neurotrophic factor and upregulation of interleukin 1 beta and tumor necrosis factor alpha in the hippocampus. Ascorbic acid-mediated hippocampal restoration from D-gal-induced impairment was associated with an enhanced hippocampus-dependent memory function. Therefore, ascorbic acid ameliorates D-gal-induced impairments through anti-oxidative and anti-inflammatory effects, and it could be an effective dietary supplement against adult brain aging.


2009 ◽  
Vol 5 (4S_Part_11) ◽  
pp. P335-P335
Author(s):  
James L. Searcy ◽  
Caitlin S. Latimer ◽  
Olivier Thibault ◽  
Eric M. Blalock ◽  
Kuey-Chu Chen ◽  
...  

2000 ◽  
Vol 15 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Rafael Luboshitzky ◽  
Michal Levi ◽  
Zila Shen-Orr ◽  
Zeev Blumenfeld ◽  
Paula Herer ◽  
...  

2002 ◽  
Vol 9 (4) ◽  
pp. 217-232 ◽  
Author(s):  
Jorge A. Bergado ◽  
William Almaguer

Aging affects all systems, but the brain seems to be particularly vulnerable to the action of negative, age-dependent factors. A gradual loss of memory functions is one of the earliest and most widespread consequences of brain aging. The causes for such impairment are still unclear. Long-term potentiation (LTP) is one form of neural plasticity, which has been proposed as the cellular correlate for memory. LTP is affected by aging, and such alteration might be causally related to memory dysfunction. In the present paper, we review the evidence sustaining the existence of a causal link between cognitive and LTP impairments, as well as the possible mechanisms involved. New results indicate a possible involvement of a deficient reinforcement of LTP by affective influences.


2020 ◽  
Vol 16 (S2) ◽  
Author(s):  
Paula Duarte‐Guterman ◽  
Dimitri A. Skandalis ◽  
Stephanie E. Lieblich ◽  
Rand S. Eid ◽  
Liisa A. Galea

Sign in / Sign up

Export Citation Format

Share Document