Water model study on inclusion removal from liquid steel by bubble flotation under turbulent conditions

2002 ◽  
Vol 29 (5) ◽  
pp. 326-336 ◽  
Author(s):  
Lifeng Zhang ◽  
S. Taniguchi ◽  
K. Matsumoto
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2229
Author(s):  
Tomasz Merder ◽  
Jacek Pieprzyca ◽  
Marek Warzecha ◽  
Piotr Warzecha ◽  
Artur Hutny

Continuous casting is one of the steel production stages, during which the improvement in the metallurgical purity of steel can be additionally affected by removing nonmetallic inclusions (NMIs). This can be achieved by means of various types of flow controllers, installed in the working space of the tundish. The change in the steel flow structure, caused by those flow controllers, should lead to an intensification of NMIs removal from the liquid metal to the slag. Therefore, it is crucial to understand the behavior of nonmetallic inclusions during the flow of liquid steel through the tundish, and particularly during their distribution. The presented paper reports the results of the modeling studies of NMI distribution in liquid steel, flowing through the tundish. CFD modeling methods—using different models and computation variants—were employed in the study. The obtained CFD results were compared with the results of laboratory tests (using a tundish water model). The results of the performed investigations allow us to compare both methods of modeling; the investigated phenomena were microparticle distribution and mass microparticle concentration in the model fluid. The validation of the CFD results verified the analyzed computation variants. The aim of the research was to determine which numerical model is the best for describing the studied phenomenon. This will be used as the first phase of a larger research program which will provide for a comprehensive study of the distribution of NMIs flowing through tundish steel.


2013 ◽  
Vol 805-806 ◽  
pp. 1716-1719 ◽  
Author(s):  
Gui Fang Zhang ◽  
Yue Hua Ding ◽  
Zhe Shi

A considerable number of research works have been carried out to study the effects of electric current and frequency of Electromagnetic Stirring (EMS) on the quality of cast steels, but there are only a few studies available addressing the effects of EMS location on inclusion removal and steel cleanliness An ideal position of EMS will improve inclusion floatation and separation from liquid steel. However, inappropriate installation will lead to the entrapment of the slag into liquid steel, and impact the quality of cast billet. The current applied for these plant trials was 300A at a frequency of 3Hz,positions form axial centers of EMS to the top of the mold were 450mm, 510mm and 690mm respectively . 130 billets of medium carbon steel were produced and samples were taken for spectral analysis to study the effects of installation location of EMS on steel cleanliness. The experimental results show that the optimum position of EMS should be placed 510mm from the top end of the copper mold when the electrical current is 300A at frequency of 3 Hz. The three parameters of placement of EMS in paper were obtained from the simulation results, and this paper focused mainly on the effect EMS position on inclusion behaviors in billet.


2017 ◽  
Vol 36 (5) ◽  
pp. 541-550 ◽  
Author(s):  
Yan Jin ◽  
Chen Ye ◽  
Xiao Luo ◽  
Hui Yuan ◽  
Changgui Cheng

AbstractIn order to improve the inclusion removal property of the tundish, the mathematic model for simulation of the flow field sourced from inner-swirl-type turbulence controller (ISTTC) was developed, in which there were six blades arranged with an eccentric angle (θ) counterclockwise. Based on the mathematical and water model, the effect of inclusion removal in the swirling flow field formed by ISTTC was analyzed. It was found that ISTTC had got the better effect of inhibiting turbulence in tundish than traditional turbulence inhibitor (TI). As the blades eccentric angle (θ) of ISTTC increasing, the intensity of swirling flow above it increased. The maximum rotate speed of fluid in swirling flow band driven by ISTTC (θ=45°) was equal to 25 rmp. Based on the force analysis of inclusion in swirling flow sourced from ISTTC, the removal effect of medium size inclusion by ISTTC was attributed to the centripetal force (Fct) of swirling flow, but removal effect of ISTTC to small size inclusion was more depend on its better turbulence depression behavior.


Author(s):  
John J. J. Chen ◽  
Chuck C. Wei ◽  
Antony D. Ackland

2015 ◽  
Vol 46 (3) ◽  
pp. 1218-1225 ◽  
Author(s):  
Lang Shui ◽  
Zhixiang Cui ◽  
Xiaodong Ma ◽  
M. Akbar Rhamdhani ◽  
Anh Nguyen ◽  
...  

2013 ◽  
Vol 734-737 ◽  
pp. 1511-1515
Author(s):  
De Hui Zhang ◽  
Ming Gang Shen ◽  
Qing Hua Qi ◽  
Jin Wei Kuang

In the process of bottom argon blowing large argon flow rate can cause vigorous fluctuations on the surface of the molten steel and splash and reoxidize the molten steel, making the slag rolled into the steel slag, also causing the erosion of the ladle lining refractories. A 1:7 ratio ladle water model system of 150 ton ladle was established from the similarity theory in the lab. Study and analyze the effects of the inserting depth and diameter of immersed tube and bottom blowing flow rate on the fluctuation of the surface of liquid steel. Results show that the fluctuations on the surface of steel can be limited effectively by changing the diameter and inserted depth of immersed tube when selecting a larger flow rate of bottom blowing, which improve the mixing effect of liquid steel.


2014 ◽  
Vol 86 (7) ◽  
pp. 716-723
Author(s):  
Arnis Pelss ◽  
Antje Rückert ◽  
Herbert Pfeifer

Sign in / Sign up

Export Citation Format

Share Document