scholarly journals Evolution of the Numerical Model Describing the Distribution of Non-Metallic Inclusions in the Tundish

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2229
Author(s):  
Tomasz Merder ◽  
Jacek Pieprzyca ◽  
Marek Warzecha ◽  
Piotr Warzecha ◽  
Artur Hutny

Continuous casting is one of the steel production stages, during which the improvement in the metallurgical purity of steel can be additionally affected by removing nonmetallic inclusions (NMIs). This can be achieved by means of various types of flow controllers, installed in the working space of the tundish. The change in the steel flow structure, caused by those flow controllers, should lead to an intensification of NMIs removal from the liquid metal to the slag. Therefore, it is crucial to understand the behavior of nonmetallic inclusions during the flow of liquid steel through the tundish, and particularly during their distribution. The presented paper reports the results of the modeling studies of NMI distribution in liquid steel, flowing through the tundish. CFD modeling methods—using different models and computation variants—were employed in the study. The obtained CFD results were compared with the results of laboratory tests (using a tundish water model). The results of the performed investigations allow us to compare both methods of modeling; the investigated phenomena were microparticle distribution and mass microparticle concentration in the model fluid. The validation of the CFD results verified the analyzed computation variants. The aim of the research was to determine which numerical model is the best for describing the studied phenomenon. This will be used as the first phase of a larger research program which will provide for a comprehensive study of the distribution of NMIs flowing through tundish steel.

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1035
Author(s):  
Jafeth Rodríguez-Ávila ◽  
Carlos Rodrigo Muñiz-Valdés ◽  
Rodolfo Morales-Dávila ◽  
Alfonso Nàjera-Bastida

Slab molds receive liquid steel from the tundish through bifurcated submerged entry nozzles (SEN) using a slide valve as throughput control. Due to the off-centering position of the three plates’ orifices that conform to the valve to control the steel passage, the flow inside the nozzle and mold is inherently biased toward the valve opening side. In the practical casting, a biased flow induces inhomogeneous heat fluxes through the mold copper plates. The nozzle design itself is also a challenge, and has direct consequences on the quality of the product. A diagnosis of the casting process regarding the internal and external flows, performed through experimental and mathematical simulation tools, made it possible to reach concrete results. The mathematical simulations predicted the flow dynamics, and the topography and levels variations of the meniscus characterized through a full-scale water model. The flows are biased, and the meniscus level fluctuations indicated that the current nozzle is not reliable to cast at the two extremes of the casting speeds of 0.9 m/min and 1.65 m/min, due to the danger of mold flux entrainment. A redesign of the nozzle is recommended, based on the experimental and mathematical results presented here.


2013 ◽  
Vol 634-638 ◽  
pp. 1752-1755
Author(s):  
Qiu Fang Tong ◽  
Zhong Hua Wu ◽  
Arun S. Mujumdar

A computational fluid dynamic (CFD) model was developed to study the fluid flow phenomena taking place in an industrial tundish. Numerical results showed spatial distributions of the velocity vectors, the residence time and fields of turbulence kinetic energy. Selected computer simulation results were validated with experimental data. The effect of the impact pad and interior dams on the hydrodynamics of liquid steel flow were studied numerically and optimized to reduce the fraction of dead volume zones and augment nonmetallic inclusions to float into the slag. A novel design of a turbo-stopper was proposed and its function to decelerate the ladle shroud jet and direct the flow back to reduce slag entrapment was discussed. Such numerical results improved our understanding of the hydrodynamics of liquid steel flow in the tundish and contribute to an optimized operation.


2011 ◽  
Vol 56 (3) ◽  
pp. 611-618 ◽  
Author(s):  
A. Cwudziński

Numerical Simulation of Behaviour a Non-Metallic Inclusions in an One-Strand Slab Tundish with Steel Flow Controll DevicesAn effective refining of liquid steel can be carried out either in a tundish or in the mould of a CSC machine. Being a flow reactor, the tundish performs the function of a link between the steelmaking ladle and the mould. Owing to this fact, the liquid steel resides in the tundish for a specific time, which enables the tundish to be used for refining purposes. For modification oftundish internal working space, two types of flow control device (FCD), namely a ceramic gas-permeable barrier and a subflux turbulence controller (STC), were proposed. For simulation of movement of gas phase and non-metallic inclusions, a discrete phase model was used. The obtained results unambiguously indicate which of the proposed tundish equipment configurations will be more advantageous for intensifying the process of liquid steel refining from NMIs.


2015 ◽  
Vol 60 (1) ◽  
pp. 227-233
Author(s):  
J. Pieprzyca ◽  
Z. Kudliński ◽  
T. Merder

AbstractThe formation of the cast strands’ primary structure is a very complex process in terms of the thermodynamics and physicochemical. It occurs during solidification and crystallization of the liquid steel in the crystallizer and in the secondary cooling zone of the CC device. On the basis of the experience gained in the industry and knowledge arising from theory of metals and alloys solidification it can be concluded, that substantial influence on the shape of cast strands primary structure have the temperature of overheating of the liquid steel above liquidus temperature and solidification velocity. A proper control of those casting parameters allows to obtain the cast strands with desired primary structure. In the one and two-way symmetric devices regulation like this is not problematic, in the multi-way devices - specially in the asymmetric - causes a series of problems. In those devices can occur a major temperature difference in each outlet zone of the tundish working space caused by i.e. the distance length diversity of liquid steel stream from the inlet to each outlet and by disadvantageous layout of liquid steel flow zones (turbulent flow zone, plug flow and dead zones) in working area of tundish. Particularly high values of those diversity can be expected in the asymmetric tundishes.The article presents results of laboratory research - model and industrial regarding impact of the liquid steel overheating temperature, but also heterogeneity of the temperature fields in the tundish on primary structure of the cast strands.


2019 ◽  
Vol 90 (10) ◽  
pp. 1900193 ◽  
Author(s):  
Tomasz Merder ◽  
Marek Warzecha ◽  
Piotr Warzecha ◽  
Jacek Pieprzyca ◽  
Artur Hutny

2015 ◽  
Vol 60 (2) ◽  
pp. 561-565
Author(s):  
A. Cwudziński

AbstractThis paper presents the results of research on the behaviour of an alloy addition in steel flowing through the tundish used for casting slabs. The device under examination is a wedge-shaped single-nozzle tundish of a capacity of 30 Mg. Due to the complexity of alloy addition dissolution and dispersion in metallurgical processes, a decision was made to use the Species Model available within the Ansys-Fluent®program. For describing the turbulence, the Realizable k-ɛmodel was chosen. By defining the heat losses on respective planes making up the virtual model, the non-isothermal conditions existing during the flow of liquid steel through the tundish were considered. From the performed numerical simulations, the fields of steel flow and steel temperature and alloy addition concentration in the tundish working space were obtained. In order to accurately illustrate the process of chemical homogenization in the tundish working space, mixing curves were recorded. Based on the obtained results (mixing curves), the mixing time needed for achieving the 95% level of chemical homogenization was calculated.


2016 ◽  
Vol 61 (1) ◽  
pp. 295-300 ◽  
Author(s):  
A. Cwudziński

The knowledge of the hydrodynamic pattern aids in designing new and modernizing existing tundishes. The device under examination is an one-strand tundish of a capacity of 30 Mg. Computer simulation of the liquid steel flow, tracer and alloy addition behaviour in turbulent motion conditions was done using the Ansys-Fluent®computer program. The hydrodynamic conditions of steel flow were determined based on the distribution of the characteristics of tundish liquid steel residence time distribution (RTD). The alloy addition was introduced to the liquid steel by the pulse-step method. Based on computer simulations carried out, steel flow fields and RTD and mixing curves were obtained, and the shares of stagnant volume flow and active flow and the mixing time were computed. Dispersion of the alloy addition in liquid steel during its flow through the tundish is a dynamic process which is determined by the hydrodynamic conditions occurring in the tundish working space.


2014 ◽  
Vol 59 (4) ◽  
pp. 1249-1256
Author(s):  
A. Cwudzinski

Abstract This paper reports the results of computer simulations of the flow of liquid steel in a single-nozzle tundish, which describe the flow hydrodynamics, depending on the thermal conditions and casting speed. In this paper, five casting speeds, namely 0.3, 0.6, 0.9, 1.2 and 1.5 m/min., have been examined. In view of the fact that tundishes are being equipped with various flow control devices and the process of creating specific hydrodynamic conditions is influenced also by the temperature gradient, computer simulations of liquid steel flow under isothermal and non-isothermal conditions were performed. Computer simulations of liquid steel flow were performed using the commercial program Ansys-Fluent ®. In order to explain the phenomena occurring in the tundish working space, the buoyancy number (Bu) has been calculated. The next research step in the analysis of the flow pattern forming in different casting conditions was to record the E and F-type RTD characteristics and to describe the pattern of flow.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 448
Author(s):  
Adam Cwudziński

Developing a technology for introducing alloy addition to liquid steel during the course of continuous casting process seems to be an interesting approach to enhancing the steelmaking process, especially as the effective introduction of micro-additives or non-metallic inclusion modifiers to the liquid steel is the key to the production of the highest-quality steel. This paper presents the results of investigation describing the process of liquid steel chemical homogenisation in the two-strand slab tundish. The alloy was fed to liquid steel by pulse-step method. Five tundish equipment variants with different flow control devices and alloy addition feeding positions were considered. The paper includes fields of liquid steel flow, alloy concentration vs. time curves, dimensionless mixing time, minimum time values and alloy concentration deviations at tundish outlets. The results pointed much more effectively with liquid steel mixing nickel than aluminium. For aluminium obtaining a 95% chemical homogenisation level requires three-fold more time. Moreover, it is definitely beneficial for chemical homogenisation to initiate the alloying process simultaneously in two sites. This procedure generates, among others, the least alloy deviation of concentration at tundish outlets.


Sign in / Sign up

Export Citation Format

Share Document