Filling exit holes of friction stir welding lap joints using consumable pin tools

2015 ◽  
Vol 20 (4) ◽  
pp. 330-336 ◽  
Author(s):  
S. A. Behmand ◽  
S. E. Mirsalehi ◽  
H. Omidvar ◽  
M. A. Safarkhanian
Author(s):  
Adel Sedaghati ◽  
Hamed Bouzary

In this paper, the effect of water cooling on mechanical properties and microstructure of AA5086 aluminum joints during friction stir welding is investigated. For doing so, the mechanical and microstructural behavior of samples welded both in air and in water was analyzed. Tests were performed involving both butt and lap welds and the results were compared. The effect of rotational speed at constant feed rate of 50 mm/min and changing rotational speed ranging from 250 to 1250 r/min was investigated. The results showed a significant change in the tensile behavior of the butt-welded specimens due to water cooling. In addition, welding was performed at constant spindle speed of 800 r/min and various traverse speeds (25 mm/min to 80 mm/min) to determine the effect of feed rate. The strength increases at first, but then decreases dramatically along with the feed rate which is due to the occurrence of a groove defect. Results showed some generally positive impacts of water cooling which are discussed in terms of tensile results, hardness distributions and microstructure analysis.


2012 ◽  
Vol 724 ◽  
pp. 481-485
Author(s):  
Kuk Hyun Song ◽  
Kazuhiro Nakata

This study evaluated the microstructure and mechanical properties of friction stir welded lap joints. Inconel 600 and SS 400 as experimental materials were selected, and friction stir welding was carried out at tool rotation speed of 200 rpm and welding speed of 100 mm/min. Applying the friction stir welding was notably effective to reduce the grain size of the stir zone, as a result, the average grain size of Inconel 600 was reduced from 20 μm in the base material to 8.5 μm in the stir zone. Joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks. Also, the hook, along the Inconel 600 alloy from SS 400, was formed at advancing side, which directly affected an increase in peel strength. In this study, we systematically discussed the evolution on microstructure and mechanical properties of friction stir lap jointed Inconel 600 and SS 400.


Author(s):  
Muhammad Fadhli Makhtar ◽  
Azman Ismail ◽  
Iliani Mohd Ikram ◽  
Fauziah Ab Rahman ◽  
Bakhtiar Ariff Baharuddin ◽  
...  

2014 ◽  
Vol 922 ◽  
pp. 688-693 ◽  
Author(s):  
E.P. Silva ◽  
Larissa Fernandes Batista ◽  
Bruna Callegari ◽  
Victor Ferrinho Pereira ◽  
Ricardo Henrique Buzolin ◽  
...  

In this work, we report on the friction stir weldability of a semi-solid cast ZK60 alloy modified with 1.5 wt% mischmetall in the lap-joint configuration using a 120WV4 steel tool with concave shoulder and conical pin. The coarser solidification microstructure in the semi-solid cast ZK60-1.5%RE alloy requires low strain rates and increased heat input to produce lap-joints without inner defects. This was achieved with 250 rpm tool rotation and 50 mm/min welding speed. Friction stir welding results in a very fine grained microstructure in the stir zone probably due to dynamic recrystallization. In the thermomechanically affected zones dynamic recrystallization seems to occur within the solute enriched intergranular zones. The distribution of longitudinal residual stresses exhibit stress maxima at both thermomechanically affected zones. A compression peak is observed at the retreating side, whereas a tensile stress maximum occurs at the advancing side.


2018 ◽  
Vol 154 ◽  
pp. 01106
Author(s):  
Widia Setiawan ◽  
Djarot B. Darmadi ◽  
Wahyono Suprapto ◽  
Rudy Soenoko

The 10 mm thick Aluminum 6061 plates have been corner joined using varied design and those were 45° Corner Butt and Corner Lap Joints (CB-45 & CL). Friction tool was hardened EMS 45. True experimental method was used with independent parameters is feed rate which varied at 10 mm/min, 15 mm/min and 30 mm/min respectively. Other parameter such as rotating speed was kept constant. Experiment results show that, CB-45 yields better properties than CL. The tensile strength of CB-45 reaches 163.7 MPa for 10 mm/min feed rate. Whilst CL produces joint with tensile strength equal 120 MPa for equal parameters. Microstructure observation showed that CB-45 produces fine and homogenous appearance of MgO compared to CL. This phenomenon is caused by the pin of CB-45 joint which fully penetrates the nugget zone which is not found in CL design. This microstructure in turn promotes higher tensile strength of CB-45.


Sign in / Sign up

Export Citation Format

Share Document