scholarly journals Comparison of Corner-Butt 45 (Cb-45) and Corner-Lap (Cl) joints in friction stir welding

2018 ◽  
Vol 154 ◽  
pp. 01106
Author(s):  
Widia Setiawan ◽  
Djarot B. Darmadi ◽  
Wahyono Suprapto ◽  
Rudy Soenoko

The 10 mm thick Aluminum 6061 plates have been corner joined using varied design and those were 45° Corner Butt and Corner Lap Joints (CB-45 & CL). Friction tool was hardened EMS 45. True experimental method was used with independent parameters is feed rate which varied at 10 mm/min, 15 mm/min and 30 mm/min respectively. Other parameter such as rotating speed was kept constant. Experiment results show that, CB-45 yields better properties than CL. The tensile strength of CB-45 reaches 163.7 MPa for 10 mm/min feed rate. Whilst CL produces joint with tensile strength equal 120 MPa for equal parameters. Microstructure observation showed that CB-45 produces fine and homogenous appearance of MgO compared to CL. This phenomenon is caused by the pin of CB-45 joint which fully penetrates the nugget zone which is not found in CL design. This microstructure in turn promotes higher tensile strength of CB-45.

Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


Author(s):  
Adel Sedaghati ◽  
Hamed Bouzary

In this paper, the effect of water cooling on mechanical properties and microstructure of AA5086 aluminum joints during friction stir welding is investigated. For doing so, the mechanical and microstructural behavior of samples welded both in air and in water was analyzed. Tests were performed involving both butt and lap welds and the results were compared. The effect of rotational speed at constant feed rate of 50 mm/min and changing rotational speed ranging from 250 to 1250 r/min was investigated. The results showed a significant change in the tensile behavior of the butt-welded specimens due to water cooling. In addition, welding was performed at constant spindle speed of 800 r/min and various traverse speeds (25 mm/min to 80 mm/min) to determine the effect of feed rate. The strength increases at first, but then decreases dramatically along with the feed rate which is due to the occurrence of a groove defect. Results showed some generally positive impacts of water cooling which are discussed in terms of tensile results, hardness distributions and microstructure analysis.


2016 ◽  
Vol 701 ◽  
pp. 154-158
Author(s):  
Nurul Hidayah Othman ◽  
Norsyahfiana Abdul Razak ◽  
Luqman Hakim Ahmad Shah ◽  
Mahadzir Ishak

This study focuses on the effect of pin taper tool ratio on friction stir welding of aluminum AA7075. Two pieces of AA7075 alloy with thickness of 6 mm were friction stir welded by using conventional milling machine. The shoulder diameter used in this experiment is fix 18mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2,and 6:1. The rotational speeds that were used in this study were 1000 rpm, 1200 rpm and 1400 rpm, respectively. The welding speeds used are 60 mm/min, 80 mm/min and 100 mm/min. Microstructure observation of welded area was studied by using optical microscope. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:2 shows higher tensile strength compared to other taper pin ratio up to 197 MPa. Moreover, taper pin ratio 6:1 showed better tensile test compared to taper pin ratio above 6:3. The optimum parameters were found to be taper pin ratio 6:2 with 1000 rpm of rotational speed and 60mm/min welding speed.


2019 ◽  
Vol 16 (1) ◽  
pp. 56-61
Author(s):  
Jupri Jupri ◽  
Jon Affi ◽  
Devi Chandra ◽  
Mochamad Asrofi

The tilt angle tool on Aluminum A5083 and Copper C11000 joint processed by Friction Stir Welding (FSW) was observed in this study. The rotation speed and transverse speed were used as a parameter process for 2500 rpm and 30 mm/min, respectively. The tensile test and microstructure observation were carried out to determine the tensile strength and metal flow on Al-Cu joint, respectively. The result shows that the highest tensile strength was in 2o tilt angle tool for 105 MPa. Its fracture surface was more close to Al and formed brittle formation.The metal flows of Al-Cu with 0o and 2o were not homogeneous and formed an agglomeration of Cu particle to Al surface.


Author(s):  
Nilesh D Ghetiya ◽  
Kaushik M Patel

In immersed friction stir welding, the workpiece is fully immersed in the water during welding. This work illustrates the effect of welding speed on mechanical properties and microstructure. Friction stir welding joints were produced using AA2014-T6 at different welding speeds ranging from 80 to 125 mm/min with constant rotational speed of 1000 r/min in air and immersed water conditions. Results revealed that with an increase in welding speed, the tensile strength of joint increased, this is due to a reduction in heat input while using both air and immersed friction stir welding, which in turn reduces the dissolution of strengthening precipitates. Microstructure result showed that grain size decreased with an increase in welding speed due to less heat input at increased welding speed. The dissolution of strengthening precipitates weakened with an increase in welding speed in both air and immersed friction stir welding, leading to an increase in hardness value at the nugget zone. Maximum tensile strength was obtained at a welding speed of 100 mm/min in immersed friction stir welding and was around 17% higher compared with a maximum tensile strength obtained using air friction stir welding.


2018 ◽  
Vol 159 ◽  
pp. 02053
Author(s):  
Djarot B. Darmadi ◽  
Widia Setiawan ◽  
Anindito Purnowidodo ◽  
Eko Siswanto

This article studies the feasibility of applying Friction Stir Welding (FSW) to an aluminum 6061 corner joint. The friction tool rotated at constant speed (2000 RPM) whilst feed rate varied in 10, 15 and 30 mm/minutes. Generally the lower feed rate produces higher tensile strength due to higher heat is embedded in the base metal, but the 15 mm/minute feed rate exhibited the least tensile strength. Lower feed rate reduces Mg alloy in base metal which in turn decreases the tensile strength. The final tensile strength is the compromise between higher heat input and lower Mg content that is why the 15 mm/minute has lowest tensile strength.


2017 ◽  
Vol 37 (1) ◽  
pp. 6-21 ◽  
Author(s):  
C. Rajendrana ◽  
K. Srinivasan ◽  
V. Balasubramanian ◽  
H. Balaji ◽  
P. Selvaraj

AbstractAA2014 aluminum alloy (Al-Cu alloy) has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW) parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE), analysis of variance (ANOVA), response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.


2014 ◽  
Vol 472 ◽  
pp. 612-616
Author(s):  
Shan Lin Wang ◽  
Heng Yv Zhang ◽  
Xing Li

The joints of magnesium alloy plate with 4 mm thickness was successfully welded by friction stir welding, and the characteristics in microstructure and microhardness of joints after heat treatment were investigated. The results indicate that the tensile strength of as welded joint exceeds 220 MPa, nearly 83% strength of basic metals. During heat treatment, the grains in nugget zone grow gradually, while the grain recrystallization was occurred in heat affected zone and basic metal zone when the temperature is 150°C. As the temperature increases continuously, the grains will grow obviously. The average microhardness of joint will increase and reaches a maximum of 73 Hv at 250°C, and then will decrease sharply with increase of heat treatment temperature.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1938
Author(s):  
Haifeng Yang ◽  
Hongyun Zhao ◽  
Xinxin Xu ◽  
Li Zhou ◽  
Huihui Zhao ◽  
...  

In this study, 2A14-T4 Al-alloy T-joints were prepared via stationary shoulder friction stir welding (SSFSW) technology where the stirring pin’s rotation speed was set as different values. In combination with the numerical simulation results, the macro-forming, microstructure, and mechanical properties of the joints under different welding conditions were analyzed. The results show that the thermal cycle curves in the SSFSW process are featured by a steep climb and slow decreasing variation trends. As the stirring pin’s rotation speed increased, the grooves on the weld surface became more obvious. The base and rib plates exhibit W- or N-shaped hardness distribution patterns. The hardness of the weld nugget zone (WNZ) was high but was lower than that of the base material. The second weld’s annealing effect contributed to the precipitation and coarsening of the precipitated phase in the first weld nugget zone (WNZ1). The hardness of the heat affect zone (HAZ) in the vicinity of the thermo-mechanically affected zone (TMAZ) dropped to the minimum. As the stirring pin's rotation speed increased, the tensile strengths of the base and rib plates first increased and then dropped. The base and rib plates exhibited ductile and brittle/ductile fracture patterns, respectively.


Sign in / Sign up

Export Citation Format

Share Document