Frequency domain spectral element model of uniform spinning shafts with thick discs

2014 ◽  
Vol 18 (sup1) ◽  
pp. S1-22-S1-24 ◽  
Author(s):  
I. Park ◽  
U. Lee
2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Ilwook Park ◽  
Usik Lee ◽  
Donghyun Park

It has been well known that exact closed-form solutions are not available for non-Levy-type plates. Thus, more accurate and efficient computational methods have been required for the plates subjected to arbitrary boundary conditions. This paper presents a frequency-domain spectral element model for the rectangular finite plate element. The spectral element model is developed by using two methods in combination: (1) the boundary splitting and (2) the super spectral element method in which the Kantorovich method-based finite strip element method and the frequency-domain waveguide method are utilized. The present spectral element model has nodes on four edges of the finite plate element, but no nodes inside. This can reduce the total number of degrees of freedom a lot to improve the computational efficiency significantly, when compared with the standard finite element method (FEM). The high solution accuracy and computational efficiency of the present spectral element model are evaluated by the comparison with exact solutions and the solutions by the standard FEM.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Seungwan Kim ◽  
Usik Lee

For successful structural health monitoring and structural integrity evaluation of a laminated composite structure, it is important to study the effects of delamination on the propagations of the guided waves in a delaminated composite beam by using an accurate and computationally efficient method. Thus, we developed a “frequency-domain” spectral element model for the symmetric composite beams. First-order-shear-deformation-theory (FSDT) based Timoshenko beam theory and Mindlin-Herrmann rod theory are adopted for the flexural (bending) waves and axial (extensional) waves, respectively. A spectral element model is derived from the governing equations of motion by using the variation method in the frequency domain. After validating the accuracy of the proposed spectral element model, the model is used to investigate the effects of delamination on the propagation of guided waves in examples of composite beams.


2012 ◽  
Vol 249-250 ◽  
pp. 838-841 ◽  
Author(s):  
Usik Lee ◽  
Il Wook Park ◽  
In Joon Jang

This paper presents a spectral element model for the laminated composite beams with a surface-bonded PZT layer. The spectral element model represented by exact dynamic stiffness matrix is derived in the frequency-domain by using the frequency-dependent dynamic shape functions which are formulated from the free wave solutions satisfying the governing differential equations transformed into the frequency-domain by using the DFT theory. The performance of the present spectral element model is then evaluated by comparing its solutions with those obtained by using the conventional finite element model


2007 ◽  
Vol 345-346 ◽  
pp. 845-848
Author(s):  
Joo Yong Cho ◽  
Han Suk Go ◽  
Usik Lee

In this paper, a fast Fourier transforms (FFT)-based spectral analysis method (SAM) is proposed for the dynamic analysis of spectral element models subjected to the non-zero initial conditions. To evaluate the proposed SAM, the spectral element model for the simply supported Bernoulli-Euler beam is considered as an example problem. The accuracy of the proposed SAM is evaluated by comparing the dynamic responses obtained by SAM with the exact analytical solutions.


2007 ◽  
Vol 14 (4) ◽  
pp. 513-523 ◽  
Author(s):  
H. Erdoğan ◽  
B. Akpınar ◽  
E. Gülal ◽  
E. Ata

Abstract. Engineering structures, like bridges, dams and towers are designed by considering temperature changes, earthquakes, wind, traffic and pedestrian loads. However, generally, it can not be estimated that these structures may be affected by special, complex and different loads. So it could not be known whether these loads are dangerous for the structure and what the response of the structures would be to these loads. Such a situation occurred on the Bosporus Bridge, which is one of the suspension bridges connecting the Asia and Europe continents, during the Eurasia Marathon on 2 October 2005, in which 75 000 pedestrians participated. Responses of the bridge to loads such as rhythmic running, pedestrian walking, vehicle passing during the marathon were observed by a real-time kinematic (RTK) Global Positioning System (GPS), with a 2.2-centimeter vertical accuracy. Observed responses were discussed in both time domain and frequency domain by using a time series analysis. High (0.1–1 Hz) and low frequencies (0.00036–0.01172 Hz) of observed bridge responses under 12 different loads which occur in different quantities, different types and different time intervals were calculated in the frequency domain. It was seen that the calculated high frequencies are similar, except for the frequencies of rhythmic running, which causes a continuously increasing vibration. Any negative response was not determined, because this rhythmic effect continued only for a short time. Also when the traffic load was effective, explicit changes in the bridge movements were determined. Finally, it was seen that bridge frequencies which were calculated from the observations and the finite element model were harmonious. But the 9th natural frequency value of the bridge under all loads, except rhythmic running could not be determined with observations.


Sign in / Sign up

Export Citation Format

Share Document