Microstructure of Nb–Ti–Cr–Si based ultrahigh temperature alloy processed by integrally directional solidification

2014 ◽  
Vol 31 (2) ◽  
pp. 231-236 ◽  
Author(s):  
B. H. Guo ◽  
X. P. Guo
2007 ◽  
Vol 539-543 ◽  
pp. 3690-3695 ◽  
Author(s):  
X.P. Guo ◽  
L.M. Gao ◽  
Ping Guan ◽  
K. Kusabiraki ◽  
Heng Zhi Fu

The microstructure and mechanical properties including room temperature fracture toughness Kq, tensile strengthσb and elongationδ at 1250°C of the Nb based alloy directionally solidified in an electron beam floating zone melting (EBFZM) furnace have been evaluated. The microstructure is primarily composed of Nb solid solution (Nbss), α-(Nb)5Si3 and (Nb)3Si phases. After directional solidification with the moving rate of electron beam gun R being respectively 2.4, 4.8 and 7.2 mm/min, the primary Nbss dendrites, Nbss + (Nb)5Si3/(Nb)3Si eutectic colonies (lamellar or rod-like) and divorced Nb silicide plates align along the longitudinal axes of the specimens. When R = 2.4 mm/min, the best directional microstructure is obtained. Directional solidification has significantly improved theσb at 1250°C and Kq. The maximumσb occurs for the specimens with R = 2.4 mm/min and is about 85.0 MPa, meanwhile, the Kq is about 19.4 MPam1/2.


Author(s):  
H.J. Zuo ◽  
M.W. Price ◽  
R.D. Griffin ◽  
R.A. Andrews ◽  
G.M. Janowski

The II-VI semiconducting alloys, such as mercury zinc telluride (MZT), have become the materials of choice for numerous infrared detection applications. However, compositional inhomogeneities and crystallographic imperfections adversly affect the performance of MZT infrared detectors. One source of imperfections in MZT is gravity-induced convection during directional solidification. Crystal growth experiments conducted in space should minimize gravity-induced convection and thereby the density of related crystallographic defects. The limited amount of time available during Space Shuttle experiments and the need for a sample of uniform composition requires the elimination of the initial composition transient which occurs in directionally solidified alloys. One method of eluding this initial transient involves directionally solidifying a portion of the sample and then quenching the remainder prior to the space experiment. During the space experiment, the MZT sample is back-melted to exactly the point at which directional solidification was stopped on earth. The directional solidification process then continues.


Author(s):  
Victoria Timchenko ◽  
P. Y. P. Chen ◽  
Graham de Vahl Davis ◽  
Eddie Leonardi

Sign in / Sign up

Export Citation Format

Share Document