Development of new azobenzothiazole polyene based dipolar molecule receptor as arginine selective optical biosensor

2014 ◽  
Vol 30 (sup7) ◽  
pp. B182-B189 ◽  
Author(s):  
F. Nourmohammadian
Planta Medica ◽  
2006 ◽  
Vol 72 (11) ◽  
Author(s):  
M Keusgen ◽  
N Botkin ◽  
L Dähne ◽  
B Fassbender ◽  
M Giersig ◽  
...  

2010 ◽  
Vol 25 (5) ◽  
pp. 341-345
Author(s):  
K. H. Kim ◽  
W. Kim ◽  
J. C. Hong ◽  
H. S. Ko ◽  
B. K. Kim ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 153
Author(s):  
Georgios Koukouvinos ◽  
Chrysoula-Evangelia Karachaliou ◽  
Ioannis Raptis ◽  
Panagiota Petrou ◽  
Evangelia Livaniou ◽  
...  

Carbendazim is a systemic benzimidazole-type fungicide with broad-spectrum activity against fungi that undermine food products safety and quality. Despite its effectiveness, carbendazim constitutes a major environmental pollutant, being hazardous to both humans and animals. Therefore, fast and reliable determination of carbendazim levels in water, soil, and food samples is of high importance for both food industry and public health. Herein, an optical biosensor based on white light reflectance spectroscopy (WLRS) for fast and sensitive determination of carbendazim in fruit juices is presented. The transducer is a Si/SiO2 chip functionalized with a benzimidazole conjugate, and determination is based on a competitive immunoassay format. Thus, for the assay, a mixture of an in-house developed rabbit polyclonal anti-carbendazim antibody with the standards or samples is pumped over the chip, followed by biotinylated secondary antibody and streptavidin. The WLRS platform allows for real-time monitoring of biomolecular interactions carried out onto the Si/SiO2 chip by transforming the shift in the reflected interference spectrum caused by the immunoreaction to effective biomolecular adlayer thickness. The sensor is able to detect 20 ng/mL of carbendazim in fruit juices with high accuracy and precision (intra- and inter-assay CVs ≤ 6.9% and ≤9.4%, respectively) in less than 30 min, applying a simple sample treatment that alleviates any “matrix-effect” on the assay results and a 60 min preincubation step for improving assay sensitivity. Excellent analytical characteristics and short analysis time along with its small size render the proposed WLRS immunosensor ideal for future on-the-spot determination of carbendazim in food and environmental samples.


2021 ◽  
Vol 239-240 ◽  
pp. 111523
Author(s):  
Dániel Petrovszki ◽  
Sándor Valkai ◽  
Evelin Gora ◽  
Martin Tanner ◽  
Anita Bányai ◽  
...  

Author(s):  
Subrata Das ◽  
Sarath C. Samudrala ◽  
Kyu J. Lee ◽  
Mohammad G. Abdallah ◽  
Brett R. Wenner ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2237
Author(s):  
Leonid Kaluzhskiy ◽  
Pavel Ershov ◽  
Evgeniy Yablokov ◽  
Tatsiana Shkel ◽  
Irina Grabovec ◽  
...  

Widespread pathologies such as atherosclerosis, metabolic syndrome and cancer are associated with dysregulation of sterol biosynthesis and metabolism. Cholesterol modulates the signaling pathways of neoplastic transformation and tumor progression. Lanosterol 14-alpha demethylase (cytochrome P450(51), CYP51A1) catalyzes one of the key steps in cholesterol biosynthesis. The fairly low somatic mutation frequency of CYP51A1, its druggability, as well as the possibility of interfering with cholesterol metabolism in cancer cells collectively suggest the clinical importance of CYP51A1. Here, we show that the natural flavonoid, luteolin 7,3′-disulfate, inhibits CYP51A1 activity. We also screened baicalein and luteolin, known to have antitumor activities and low toxicity, for their ability to interact with CYP51A1. The Kd values were estimated using both a surface plasmon resonance optical biosensor and spectral titration assays. Unexpectedly, in the enzymatic activity assays, only the water-soluble form of luteolin—luteolin 7,3′-disulfate—showed the ability to potently inhibit CYP51A1. Based on molecular docking, luteolin 7,3′-disulfate binding suggests blocking of the substrate access channel. However, an alternative site on the proximal surface where the redox partner binds cannot be excluded. Overall, flavonoids have the potential to inhibit the activity of human CYP51A1 and should be further explored for their cholesterol-lowering and anti-cancer activity.


Optik ◽  
2015 ◽  
Vol 126 (21) ◽  
pp. 2930-2933 ◽  
Author(s):  
Nai-Fei Ren ◽  
Bing Sun ◽  
Ming-Yang Chen

Sign in / Sign up

Export Citation Format

Share Document