Magnesiokoritnigite, Mg(AsO3OH)·H2O, from the Torrecillas mine, Iquique Province, Chile: the Mg-analogue of koritnigite

2013 ◽  
Vol 77 (8) ◽  
pp. 3081-3092 ◽  
Author(s):  
A. R. Kampf ◽  
B. P. Nash ◽  
M. Dini ◽  
A. A. Molina Donoso

AbstractThe new mineral magnesiokoritnigite (IMA 2013-049), ideally Mg(AsO3OH)·H2O, was found at the Torrecillas mine, Salar Grande, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with anhydrite, chudobaite, halite, lavendulan, quartz and scorodite. Crystals of magnesiokoritnigite are colourless to pale-pink, thin to thick laths up to 2 mm long. Laths are elongated on [001], flattened on {010} and exhibit the forms {010}, {110}, {10}, {101}, {031} and {01}. The crystals also occur in dense deep-pink intergrowths. Crystals are transparent with a vitreous lustre. The mineral has a white streak, Mohs hardness of ∼3, brittle tenacity, conchoidal fracture and one perfect cleavage on {101}. The measured and calculated densities are 2.95(3) and 2.935 g cm– 3, respectively. Optically, magnesiokoritnigite is biaxial (+) with α = 1.579(1), β = 1.586(1) and γ = 1.620(1) (measured in white light). The measured 2V is 50(2)° and the calculated 2V is 50°. Dispersion is r < v, medium. The optical orientation is Y ≈ b; Z ^ c = 36° in obtuse β (note pseudomonoclinic symmetry). The mineral is non-pleochroic. The empirical formula, determined from electron-microprobe analyses, is (Mg0.94Cu0.03Mn0.02Ca0.01)Σ 1.00As0.96O5H3.19. Magnesiokoritnigite is triclinic, P, with a = 7.8702(7), b = 15.8081(6), c = 6.6389(14) Å, α = 90.814(6), β = 96.193(6), γ = 90.094(7)°, V = 821.06(19) Å3 and Z = 8. The eight strongest X-ray powder diffraction lines are [dobs Å (I)(hkl)]: 7.96(100)(020), 4.80(54)(101), 3.791(85)(10,210,1,31), 3.242(56)(02,1,012), 3.157(92)(21,30,230), 3.021(61)(11,141,21,221), 2.798(41)(02,032) and 1.908(43)(multiple). The structure, refined to R1 = 5.74% for 2360 Fo > 4σF reflections, shows magnesiokoritnigite to be isostructural with koritnigite and cobaltkoritnigite.

2014 ◽  
Vol 78 (4) ◽  
pp. 787-795 ◽  
Author(s):  
A. R. Kampf ◽  
S. J. Mills ◽  
F. Hatert ◽  
B. P. Nash ◽  
M. Dini ◽  
...  

AbstractThe new mineral canutite (IMA2013-070), NaMn3[AsO4][AsO3(OH)]2, was found at two different locations at the Torrecillas mine, Salar Grande, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with anhydrite, halite, lavendulan, magnesiokoritnigite, pyrite, quartz and scorodite. Canutite is reddish brown in colour. It forms as prisms elongated on [20] and exhibiting the forms {010}, {100}, {10}, {201} and {102}, or as tablets flattened on {102} and exhibiting the forms {102} and {110}. Crystals are transparent with a vitreous lustre. The mineral has a pale tan streak, Mohs hardness of 2½, brittle tenacity, splintery fracture and two perfect cleavages, on {010} and {101}. The calculated density is 4.112 g cm−3. Optically, canutite is biaxial (+) with α = 1.712(3), β = 1.725(3) and γ = 1.756(3) (measured in white light). The measured 2V is 65.6(4)°, the dispersion is r < v (slight), the optical orientation is Z = b; X ^ a = 18° in obtuse β and pleochroism is imperceptible. The mineral is slowly soluble in cold, dilute HCl. The empirical formula (for tabular crystals from near the mineshaft), determined from electron - microprobe analyses, is (Na1.05Mn2.64Mg0.34Cu0.14Co0.03)∑4.20As3O12H1.62. Canutite is monoclinic, C2/c, a = 12.3282(4), b = 12.6039(5), c = 6.8814(5) Å, β = 113.480(8)°, V = 980.72(10) Å3 and Z = 4. The eight strongest X-ray powder diffraction lines are [dobs Å(I)(hkl)]: 6.33(34)(020), 4.12(26)(21), 3.608(29)(310,31), 3.296(57)(12), 3.150(28)(002,131), 2.819(42)(400,041,330), 2.740(100)(240,02,112) and 1.5364(31)(multiple). The structure, refined to R1 = 2.33% for 1089 Fo > 4σF reflections, shows canutite to be isostructural with protonated members of the alluaudite group.


2020 ◽  
Vol 84 (3) ◽  
pp. 435-443
Author(s):  
Anthony R. Kampf ◽  
Travis A. Olds ◽  
Jakub Plášil ◽  
Barbara P. Nash ◽  
Joe Marty

AbstractThe new mineral pseudomeisserite-(NH4) (IMA2018-166), (NH4,K)2Na4[(UO2)2(SO4)5]⋅4H2O, was found in the Blue Lizard mine, San Juan County, Utah, USA, where it occurs as light yellow prisms in a secondary assemblage with belakovskiite, blödite, changoite, ferrinatrite, gypsum, ivsite, metavoltine and tamarugite. The streak is very pale yellow and the fluorescence is bright lime green under 405 nm ultraviolet light. Crystals are transparent with vitreous lustre. The tenacity is brittle, the Mohs hardness is 2½, the fracture is curved or conchoidal and there is one perfect cleavage on {100}. The mineral is easily soluble in H2O and has a measured density of 3.22(2) g⋅cm–3. Pseudomeisserite-(NH4) is optically biaxial (–) with α = 1.536(2), β = 1.559(2) and γ = 1.565(2) (white light); 2Vmeas. = 53(1)°; dispersion is r > v, distinct; pleochroism: X colourless, Y light yellow and Z pale yellow (X < Z < Y); optical orientation: Z = b, Y ∧ c = 33° in obtuse β). Electron microprobe analyses (WDS mode) provided (NH4)1.49K0.60Na3.87U2.00S5.04O28H7.78. The five strongest X-ray powder diffraction lines are [dobs, Å(I)(hkl)]: 12.69(76)(100), 6.83(84)(012,102), 6.01(100)($\bar{2}$02), 3.959(67)($\bar{2}$21,$\bar{2}$14,$\bar{1}$23) and 3.135(76)($\bar{2}$06,223,$\bar{1}$16). Pseudomeisserite-(NH4) is monoclinic, P21/c, a = 13.1010(3), b = 10.0948(2), c = 19.4945(14) Å, β = 104.285(7)°, V = 2498.5(2) Å3 and Z = 4. The structural unit in the structure (R1 = 0.0254 for 3837 I > 2σI reflections) is a novel [(UO2)2(SO4)5]6– uranyl-sulfate band.


2014 ◽  
Vol 78 (3) ◽  
pp. 747-755 ◽  
Author(s):  
A. R. Kampf ◽  
B. P. Nash ◽  
M. Dini ◽  
A. A. Molina Donoso

AbstractThe new mineral torrecillasite (IMA2013-112), Na(As,Sb)43+O6Cl, was found at the Torrecillas mine, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with anhydrite, cinnabar, gypsum, halite, lavendulan, magnesiokoritnigite, marcasite, quartz, pyrite, scorodite, wendwilsonite and other potentially new As-bearing minerals. Torrecillasite occurs as thin colourless prisms up to 0.4 mm long in jack-straw aggregates, as very thin fibres in puff balls and as massive intergrowths of needles. Prisms are elongated on [100] with diamond-shaped cross-section and irregular terminations. Crystals are transparent, with adamantine lustre and white streak. The Mohs hardness is 2½, tenacity is brittle and fracture is irregular. Cleavage on (001) is likely. The calculated density is 4.056 g cm−3. Optically, torrecillasite is biaxial (−) with α = 1.800(5), β = 1.96(1), γ = 2.03(calc.) (measured in white light). The measured 2V is 62.1(5)°, no dispersion or pleochroism were observed, the optical orientation isX=c,Y=b,Z=a. The mineral is very slowly soluble in H2O, slowly soluble in dilute HCl and rapidly soluble in concentrated HCl. The empirical formula, determined from electron-microprobe analyses, is (Na1.03Mg0.02)∑1.05(As3.39Sb0.62)∑4.01O6.07Cl0.93. Torrecillasite is orthorhombic,Pmcn, a= 5.2580(9),b= 8.0620(13),c= 18.654(3) Å,V= 790.7(2) Å3andZ= 4. The eight strongest X-ray powder diffraction lines are [dobsÅ(I)(hkl)]: 4.298(33)(111), 4.031(78)(014,020), 3.035(100)(024,122), 2.853(39)(115,123), 2.642(84)(124,200), 2.426(34)(125), 1.8963(32)(225) and 1.8026(29)(0·1·10,233). The structure, refined toR1= 4.06% for 814Fo>4σFreflections, contains a neutral, wavy As2O3layer parallel to (001) consisting of As3+O3pyramids that share O atoms to form six-membered rings. Successive layers are flipped relative to one another and successive interlayer regions contain alternately either Na or Cl atoms. Torrecillasite is isostructural with synthetic orthorhombic NaAs4O6Br.


2016 ◽  
Vol 80 (7) ◽  
pp. 1265-1272 ◽  
Author(s):  
Anthony R. Kampf ◽  
Barbara P. Nash ◽  
Maurizio Dini ◽  
Arturo Molina A. Donoso

AbstractThe new mineral gajardoite (IMA2015-040), KCa0.5As3+4O6Cl2·5H2O, was found at the Torrecillas mine, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with native arsenic, arsenolite,chongite, talmessite and torrecillasite. Gajardoite occurs as hexagonal plates up to ∼100 μm in diameter and 5 μm thick, in rosette-like subparallel intergrowths. Crystals are transparent, with vitreous lustre and white streak. The Mohs hardness is ∼1½, tenacity is brittleand fracture is irregular. Cleavage is perfect on {001}. The measured density is 2.64 g/cm3 and the calculated density is 2.676 g/cm3. Optically, gajardoite is uniaxial (–) with ω = 1.780(3) and ε = 1.570(5) (measured in white light). The mineral is very slowly soluble in H2O and slowly soluble in dilute HCl at room temperature. The empirical formula, determined from electron-microprobe analyses, is (K0.77Ca0.71Na0.05Mg0.05)∑1.58As4O11Cl1.96H9.62.Gajardoite is hexagonal, P6/mmm, a = 5.2558(8), c = 15.9666(18) Å, V = 381.96(13) Å3 and Z = 1. The eight strongest powder X-ray diffraction lines are [dobs Å(I)(hkl)]: 16.00(100)(001), 5.31(48)(003),3.466 (31)(103), 3.013(44)(104), 2.624(51)(006,110,111), 2.353(36)(113), 1.8647(21)(116,205) and 1.4605(17) (119,303,216). The structure, refined to R1 = 3.49% for 169 Fo > 4σF reflections, contains two types of layers. One layer of formulaKAs3+4O6Cl2 consists of two neutral As2O3 sheets, between which are K+ cations and on the outside of which are Cl– anions. This layer is topologically identical to a slice of the lucabindiite structureand similar to a slice of the torrecillasite structure. The second layer consists of an edge-sharing sheet of Ca(H2O)6 trigonal pyramids with isolated H2O groups centred in the hexagonal cavities in the sheet.


2020 ◽  
Vol 58 (4) ◽  
pp. 533-542
Author(s):  
Anthony R. Kampf ◽  
Robert M. Housley ◽  
George R. Rossman

ABSTRACT Northstarite, Pb6(Te4+O3)5(S2O3), is a new mineral from the North Star mine, Tintic district, Juab County, Utah, USA. It is an oxidation-zone mineral occuring in a vug in massive quartz-baryte-enargite-pyrite in association with anglesite, azurite, chrysocolla, fluorapatite, plumbogummite, tellurite, zincospiroffite, and the new mineral adanite. Crystals are beige short prisms with pyramidal terminations, up to about 1 mm in length. The mineral is transparent to translucent with adamantine luster, white streak, Mohs hardness 2, brittle tenacity, irregular fracture, and no cleavage. The calculated density is 6.888 g/cm3. Northstarite is uniaxial (–) and nonpleochroic. The Raman spectrum is consistent with the presence of tellurite and thiosulfate groups and the absence of OH and H2O. Electron-microprobe analyses gave the empirical formula Pb5.80Sb3+0.05Te4+5.04S6+1.02S2–1.02O18. The mineral is hexagonal, space group P63, with a = 10.2495(5), c = 11.6677(8) Å, V = 1061.50(13) Å3, and Z = 2. The five strongest X-ray powder diffraction lines are [dobs Å(I)(hkl)]: 3.098(100)(113), 2.957(88)(300), 2.140(42)(223), 1.7335(41)(413), and 1.6256(31)(306). The structure (R1 = 0.033 for 1476 I &gt; 2σI reflections) is a framework constructed of short (strong) Pb–O and Te–O bonds with channels along the 63 axes. The thiosulfate groups at the centers of the channels are only weakly bonded to the framework.


2020 ◽  
Vol 84 (4) ◽  
pp. 533-539
Author(s):  
Martin Števko ◽  
Jiří Sejkora ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Radek Škoda

AbstractThe new mineral fluorapophyllite-(NH4), ideally NH4Ca4(Si8O20)F⋅8H2O, was found at the Vechec andesite quarry located near Vechec village, Vranov nad Topľou Co., Prešov Region, Slovak Republic. It occurs in cavities of quartz–illite–saponite–tobelite xenolith embedded in pyroxene andesite. Fluorapophyllite-(NH4) is associated with calcite, tridymite, pyrite, chabazite-Ca and heulandite-Ca. It forms clusters, aggregates or crystalline crusts consisting of individual, well-developed crystals up to 4 mm in size, exhibiting the forms {110}, {101} and {001}. The mineral is colourless to light pink and translucent with white streak and vitreous to pearly lustre; it is non-fluorescent under ultraviolet radiation. The Mohs hardness is ~4½ to 5, tenacity is brittle, fracture is irregular, and there is perfect cleavage on {001}. The calculated density is 2.325 g cm–3. Fluorapophyllite-(NH4) is optically uniaxial (+) with ω = 1.5414(5) and ɛ = 1.5393(8) (λ = 589 nm). It is non-pleochroic. The empirical formula (based on 29 O + F apfu) is [(NH4)0.55K0.32Na0.07Ca0.06]Σ1.00(Ca4.01Mg0.02)Σ4.03Si7.97O20[F0.84(OH)0.16]Σ1.00⋅8H2O. Fluorapophyllite-(NH4) is tetragonal, space group P4/mnc, a = 8.99336(9) Å, c = 15.7910(3) Å, V = 1277.18(3) Å3 and Z = 2. The seven strongest X-ray powder diffraction lines are [dobs in Å,(I,%)(hkl)]: 7.897(32)(002), 7.812(13)(101), 4.547(14)(103), 3.946(100)(004), 2.985(39)(105), 2.4841(11)(215) and 1.5788(12)(00.10). The crystal structure of fluorapophyllite-(NH4), refined to R1 = 0.0299 for 743 unique (I > 3σI) observed reflections, confirmed that the atomic arrangement is very similar to that of the other members of the apophyllite group. The new mineral is named according to the current nomenclature scheme for apophyllite-group minerals and is an NH4 dominant analogue of fluorapophyllite-(K), fluorapophyllite-(Na) and fluorapophyllite-(Cs).


2016 ◽  
Vol 80 (7) ◽  
pp. 1255-1263 ◽  
Author(s):  
Anthony R. Kampf ◽  
Barbara P. Nash ◽  
Maurizio Dini ◽  
Arturo A. Molina Donoso

AbstractThe new mineral chongite (IMA2015–039), Ca3Mg2(AsO4)2(AsO3OH)2.4H2O, was found at the Torrecillas mine, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with native arsenic, arsenolite, gajardoite, talmessite and torrecillasite. Chongite occurs as prismatic crystals up to ∼1 mm long grouped in tightly intergrown radial aggregates up to 2 mm in diameter. Crystals are transparent, with vitreous lustre and white streak. The Mohs hardness is∼3½,tenacity is brittle and fracture is conchoidal. Cleavage is good on ﹛100﹜. The measured density is 3.09(2) g/cm3and the calculated density is 3.087 g/cm3. Optically, chongite is biaxial (-) with α = 1.612(1), β= 1.626(1), γ= 1.635(1) and 2V = 76.9(1)° (measured in white light). Dispersion isr < v,distinct. The optical orientation isX= b;Z^a =27° in obtuse angle β. The mineral is slowly soluble in dilute HCl at room temperature. The empirical formula, determined from electron-microprobe analyses, is (Ca2.90Mg1.93Mn0.14)Σ4.97As4O20H10.07. Chongite is monoclinic,die, a =18.5879(6),b =9.3660(3),c =9.9622(7) Å, β = 96.916(7)°,V=1721.75(14) Å3and Z=4. The eight strongest powder X-ray diffraction lines are[dobsÅ(I)(hkl)]: 8.35(29)(110), 4.644(62) (3ˉ11,020,400,2̄02), 4.396(26)(311), 3.372(62)(022,312,5̄11), 3.275(100)(420,22ˉ2,421), 3.113(57)(222), 2.384(30)(711,530,7̄12) and 1.7990(22)(9̄13,334,5̄34). The structure determination(R1= 1.56% for 1849 Fo> 4σFreflections) confirms that chongite is a member of the hureaulite group.


2013 ◽  
Vol 77 (6) ◽  
pp. 2811-2823 ◽  
Author(s):  
A. R. Kampf ◽  
S. J. Mills ◽  
R. M. Housley ◽  
G. R. Rossman ◽  
B. P. Nash ◽  
...  

AbstractJoteite (IMA2012-091), Ca2CuAl[AsO4][AsO3(OH)]2(OH)2·5H2O, is a new mineral from the Jote mine, Tierra Amarilla, Copiapó Province, Atacama, Chile. The mineral is a late-stage, low-temperature, secondary mineral occurring with conichalcite, mansfieldite, pharmacoalumite, pharmacosiderite and scorodite in narrow seams and vughs in the oxidized upper portion of a hydrothermal sulfide vein hosted by volcanoclastic rocks. Crystals occur as sky-blue to greenish-blue thin blades, flattened and twinned on {001}, up to ~300 μm in length, and exhibiting the forms {001}, {010}, {10}, {20} and {111}. The blades are commonly intergrown in wheat-sheaf-like bundles, less commonly in sprays, and sometimes aggregated as dense crusts and cavity linings. The mineral is transparent and has a very pale blue streak and vitreous lustre. The Mohs hardness is estimated at 2 to 3, the tenacity is brittle, and the fracture is curved. It has one perfect cleavage on {001}. The calculated density based on the empirical formula is 3.056 g/cm3. It is optically biaxial (–) with α = 1.634(1), β = 1.644(1), γ = 1.651(1) (white light), 2Vmeas = 78(2)° and 2Vcalc = 79.4°. The mineral exhibits weak dispersion, r < v. The optical orientation is X ≈ c*; Y ≈ b*. The pleochroism is Z (greenish blue) > Y (pale greenish blue) > X (colourless). The normalized electron-microprobe analyses (average of 5) provided: CaO 15.70, CuO 11.22, Al2O38.32, As2O546.62, H2O 18.14 (structure), total 100 wt.%. The empirical formula (based on 19 O a.p.f.u.) is: Ca1.98Cu1.00Al1.15As2.87H14.24O19. The mineral is slowly soluble in cold, concentrated HCl. Joteite is triclinic, P1, with the cell parameters: a = 6.0530(2), b = 10.2329(3), c = 12.9112(4) Å, α = 87.572(2), β = 78.480(2), γ = 78.697(2)°, V = 768.40(4) Å3 and Z = 2. The eight strongest lines in the X-ray powder diffraction pattern are [dobs Å (I)(hkl)]: 12.76(100)(001), 5.009(23)(020), 4.206(26)(120,003,121), 3.92(24)(022,02,02), 3.40(25)(1̄13), 3.233(19)(031,023,123,02̄3), 2.97(132,201) and 2.91(15)(22,13). In the structure of joteite (R1 = 7.72% for 6003 Fo > 4σF), AsO4 and AsO3 (OH) tetrahedra, AlO6 octahedra and Cu2+O5 square pyramids share corners to form sheets parallel to {001}. In addition, 7- and 8-coordinate Ca polyhedra link to the periphery of the sheets yielding thick slabs. Between the slabs are unconnected AsO3(OH) tetrahedra, which link the slabs only via hydrogen bonding. The Raman spectrum shows features consistent with OH and/or H2O in multiple structural environments. The region between the slabs may host excess Al in place of some As.


2017 ◽  
Vol 81 (4) ◽  
pp. 895-907 ◽  
Author(s):  
Anthony R. Kampf ◽  
Jakub Plášil ◽  
Jiří Čejka ◽  
Joe Marty ◽  
Radek Škoda ◽  
...  

AbstractThe new mineral alwilkinsite-(Y) (IMA2015-097), Y(H2O)7[(UO2)3(SO4)2O(OH)3]·7H2O, was found in the Blue Lizard mine, San Juan County, Utah, USA, where it occurs as a secondary alteration phase.The mineral is slightly flexible before brittle failure with splintery fracture and perfect cleavage parallel to [010], has Mohs hardness of ∼2–2½, exhibits dull greenish-grey fluorescence and has a calculated density of 3.371 g cm–3. Alwilkinsite-(Y) occursas yellowish-green needles, elongate on [010], with domatic terminations and exhibits the forms {102}, {301} and {124}. It is optically biaxial (+) with α = 1.573(1), β = 1.581(1), γ = 1.601(1) (white light), the measured 2V is 65.3(1)°, the dispersion is r<v (weak), the optical orientation is X = c, Y = a, Z = b and there is no pleochroism. Electron microprobe analyses yielded the empirical formula (Y0.66Dy0.08Gd0.06Er0.05Nd0.03Yb0.03Sm0.02Ce0.01)∑0.94(H2O)7[(UO2)3(S1.01O4)2O(OH)3]·7H2O.The eight strongest powder X-ray diffraction lines are [dobs Å(I)(hkl)]: 9.88(100)(101,002), 7.47(13)(102), 5.621(17)(103,201), 4.483(18)(104), 3.886(14)(130,222), 3.322(46)(multiple), 3.223(13)(multiple) and 3.145(16)(034). Alwilkinsite-(Y) is orthorhombic,P212121, a = 11.6194(5), b = 12.4250(6), c = 19.4495(14) Å, V = 2807.9(3) Å3 and Z = 4. The structure of alwilkinsite-(Y) (R1 = 0.042 for 4244 Fo > 4σF)contains edge-sharing chains of uranyl bipyramids with outlying sulfate tetrahedra that are similar to the chain linkages within the uranyl sulfate sheets of the zippeite structure. Short segments of the uranyl sulfate chains in the alwilkinsite-(Y) structure have the same topology as portionsof the uranyl sulfate linkages in uranopilite. Alwilkinsite-(Y) is named for Alan (Al) J. Wilkins, MD (born 1955), the discoverer of the mineral.


2020 ◽  
Vol 58 (5) ◽  
pp. 549-562
Author(s):  
Anatoly V. Kasatkin ◽  
Fabrizio Nestola ◽  
Radek Škoda ◽  
Nikita V. Chukanov ◽  
Atali A. Agakhanov ◽  
...  

ABSTRACT Hingganite-(Nd), ideally Nd2□Be2Si2O8(OH)2, is a new gadolinite group, gadolinite supergroup mineral discovered at Zagi Mountain, near Kafoor Dheri, about 4 km S of Warsak and 30 km NW of Peshawar, Khyber Pakhtunkhwa Province, Pakistan. The new mineral forms zones measuring up to 1 × 1 mm2 in loose prismatic crystals up to 0.7 cm long, where it is intergrown with hingganite-(Y). Other associated minerals include aegirine, microcline, fergusonite-(Y), and zircon. Hingganite-(Nd) is dark greenish-brown, transparent, has vitreous luster and a white streak. It is brittle and has a conchoidal fracture. No cleavage or parting are observed. Mohs hardness is 5½–6. Dcalc. = 4.690 g/cm3. Hingganite-(Nd) is non-pleochroic, optically biaxial (+), α = 1.746(5), β = 1.766(5), γ = 1.792(6) (589 nm). 2Vmeas. = 80(7)°; 2Vcalc. = 84°. Dispersion of optical axes was not observed. The average chemical composition of hingganite-(Nd) is as follows (wt.%; electron microprobe, BeO, B2O3, and Lu2O3 content measured by LA-ICP-MS; H2O calculated by stoichiometry): BeO 9.64, CaO 0.45, MnO 0.10, FeO 3.03, B2O3 0.42, Y2O3 8.75, La2O3 1.63, Ce2O3 12.89, Pr2O3 3.09, Nd2O3 16.90, Sm2O3 5.97, Eu2O3 1.08, Gd2O3 5.15, Tb2O3 0.50, Dy2O3 2.50, Ho2O3 0.33, Er2O3 0.84, Tm2O3 0.10, Yb2O3 0.44, Lu2O3 0.04, ThO2 0.13, SiO2 23.55, H2O 2.72, total 100.25. The empirical formula calculated on the basis of 2 Si apfu is (Nd0.513Ce0.401Y0.395Sm0.175Gd0.145Pr0.096Dy0.068La0.051Ca0.041Eu0.031Er0.022Tb0.014Yb0.011Ho0.009Tm0.003Th0.003Lu0.001)Σ1.979(□0.778Fe2+0.215Mn0.007)Σ1.000(Be1.967B0.062)Σ2.029Si2O8.46(OH)1.54. Hingganite-(Nd) is monoclinic, space group P21/c with a = 4.77193(15), b = 7.6422(2), c = 9.9299(2) Å, β = 89.851(2)°, V = 362.123(14) Å3, and Z = 2. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.105 (95) (011), 4.959 (56) (002), 4.773 (100) (100), 3.462 (58) (102), 3.122 , 3.028 (61) (013), 2.864 (87) (121), 2.573 (89) (113). The crystal structure of hingganite-(Nd) was refined from single-crystal X-ray diffraction data to R = 0.034 for 2007 unique reflections with I &gt; 2σ(I). The new mineral is named as an analogue of hingganite-(Y), hingganite-(Yb), and hingganite-(Ce), but with Nd dominant among the rare earth elements.


Sign in / Sign up

Export Citation Format

Share Document