Ore characterization and textural relationships among gold, selenides, platinum-group minerals and uraninite at the granite-related Buraco do Ouro gold mine, Cavalcante, Central Brazil

2017 ◽  
Vol 81 (3) ◽  
pp. 463-475
Author(s):  
J. Menez ◽  
N. F. Botelho

AbstractGold occurrences have been reported in the northeastern part of Goiás State since the beginning of the 18th Century. The main mineralization is associated with Paleoproterozoic peraluminous, syntectonic granites of the Aurumina Suite and associated metasedimentary,graphite-bearing country rocks of the Ticunzal Formation. In the Buraco do Ouro gold mine, the mineralization is hosted in muscovite-quartz mylonite in a silicified shear zone near the contact between biotite-muscovite granite and paragneiss of the Ticunzal Formation. The ore mineralogy consistsof gold, paraguanajuatite (Bi2Se3), kalungaite (PdAsSe), isomertieite [Pd11Sb2As2], mertieite II [Pd8(Sb,As)3], sperrylite (PtAs2), padmaite (PdBiSe), bohdanowiczite (AgBiSe2), clausthalite (PbSe),krutaite (CuSe2), ferroselite (FeSe2), uraninite (UO2) and unnamed Ag-Pb-Bi-Se minerals. Local magnetite concentrations and rare chalcopyrite and pyrite are also associated with both mineralized and barren mylonites in a gangue consisting of muscovite, quartzand rare tourmaline. High TiO2 muscovite clasts in the ore are interpreted as the magmatic muscovite of the original granite, and the mineralization is considered to be synchronous with the syntectonic granite intrusion during syn-emplacement shearing and alteration. The associationbetween granitic rocks and platinum-group element (PGE)-bearing gold mineralization observed in the Buraco do Ouro mine is uncommon and unique in the context of the Aurumina Suite and the Ticunzal Formation, where gold deposits and occurrences are gold-only. The chemical data suggest the possibilityof a solid solution between paraguanajuatite and bohdanowiczite. In addition, a complex intergrowth occurs between paraguanajuatite, clausthalite and Ag-Pb-Bi-Se phases, one of which, a Pb-Bi-Se phase could represent a new mineral. Uraninite is identified for the first time in this mineralassemblage and its concentration in the ore seems important, as revealed by high gamma spectrometric measurements in the samples collected in the mine. The association between gold and uranium constitutes a regional signature, observed in both gold and uranium deposits in the Cavalcante region.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 264
Author(s):  
Sheida Makvandi ◽  
Philippe Pagé ◽  
Jonathan Tremblay ◽  
Réjean Girard

The discovery of new mineral deposits contributes to the sustainable mineral industrial development, which is essential to satisfy global resource demands. The exploration for new mineral resources is challenging in Canada since its vast lands are mostly covered by a thick layer of Quaternary sediments that obscure bedrock geology. In the course of the recent decades, indicator minerals recovered from till heavy mineral concentrates have been effectively used to prospect for a broad range of mineral deposits including diamond, gold, and base metals. However, these methods traditionally focus on (visual) investigation of the 0.25–2.0 mm grain-size fraction of unconsolidated sediments, whilst our observations emphasize on higher abundance, or sometimes unique occurrence of precious metal (Au, Ag, and platinum-group elements) minerals in the finer-grained fractions (<0.25 mm). This study aims to present the advantages of applying a mineral detection routine initially developed for gold grains counting and characterization, to platinum-group minerals in < 50 µm till heavy mineral concentrates. This technique, which uses an automated scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer, can provide quantitative mineralogical and semi-quantitative chemical data of heavy minerals of interest, simultaneously. This work presents the mineralogical and chemical characteristics, the grain size distribution, and the surface textures of 2664 discrete platinum-group mineral grains recovered from the processing of 5194 glacial sediment samples collected from different zones in the Canadian Shield (mostly Quebec and Ontario provinces). Fifty-eight different platinum-group mineral species have been identified to date, among which sperrylite (PtAs2) is by far the most abundant (n = 1488; 55.86%). Textural and mineral-chemical data suggest that detrital platinum-group minerals in the studied samples have been derived, at least in part, from Au-rich ore systems.


2006 ◽  
Vol 70 (1) ◽  
pp. 123-130 ◽  
Author(s):  
N. F. Botelho ◽  
M. A. Moura ◽  
R. C. Peterson ◽  
C. J. Stanley ◽  
D. V. G. Silva

AbstractKalungaite, PdAsSe, is a new mineral discovered in the Buraco do Ouro gold mine, Cavalcante town, Goiás State, Brazil. It occurs in a quartz-muscovite mylonite, related to a peraluminous granite, in platy anhedral aggregates along foliation planes. Associated ore minerals are gold, chalcopyrite, bohdanowiczite, an unnamed Pb-Bi-Se-S mineral, clausthalite, guanajuatite, stibiopalladinite, sperrylite and padmaite. Gangue minerals are muscovite, quartz and rare tourmaline and magnetite. Kalungaite is lead-grey, has a metallic lustre, a black streak and is brittle with uneven fracture. No cleavage was observed. The mineral has a micro-indentation hardness of VHN25 = 438 (range of 429–455 kg/mm2 from five indentations). Under reflected light, kalungaite is cream, or creamy grey adjacent to gold grains, has no internal reflections and is isotropic. Reflectance values in air (and in oil) are: 47.5 (33.3) at 470 nm, 46.9 (32.6) at 546 nm, 46.8 (32.6) at 589 nm and 48.0 (34.0) at 650 nm. The average of eight electron-microprobe analyses gives: Pd 41.32, As 27.49, Bi 0.35, Sb 1.59, Se 27.67 and S 1.22, total 99.64 wt. %, corresponding to Pd1.006(As0.950Sb0.034Bi0.004)Σ0.988(Se0.908S0.099)Σ1.007Kalungaite is cubic, space group Pa, a = 6.089(4) Å, V = 225.78 Å3, Z = 4. Dcalc is 7.59 g/cm3. The strongest seven X-ray powder-diffraction lines [d in Å(I)(hkl)] are: 3.027(75)(002), 1.838(100)(113), 1.172(95)(115, 333), 1.077(80)(044, 144, 334), 0.988(70)(116, 235, 253), 0.929(90)(335) and 0.918(70)(226). Kalungaite is interpreted as having formed from hydrothermal fluids of granitic origin, during syn-emplacement shearing and alteration, producing an unusual gold-platinum-group element deposit.


PROMINE ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 1-11
Author(s):  
Retno Anjarwati ◽  
Arifudin Idrus ◽  
Lucas Donny Setijadji

The regional tectonic conditions of the KSK Contract of Work are located in the mid-Tertiary magmatic arc (Carlile and Mitchell, 1994) which host a number of epithermal gold deposits (eg, Kelian, Indon, Muro) and significant prospects such as Muyup, Masupa Ria, Gunung Mas and Mirah. Copper-gold mineralization in the KSK Contract of Work is associated with a number of intrusions that have occupied the shallow-scale crust at the Mesozoic metamorphic intercellular junction to the south and continuously into the Lower Tertiary sediment toward the water. This intrusion is interpreted to be part of the Oligocene arc of Central Kalimantan (in Carlile and Mitchell 1994) Volcanic rocks and associated volcanoes are older than intrusions, possibly aged Cretaceous and exposed together with all three contacts (Carlile and Mitchell, 1994) some researchers contribute details about the geological and mineralogical background, and some papers for that are published for the Beruang Kanan region and beyond but no one can confirm the genesis type of the Beruang Kanan region The mineralization of the Beruang Kanan area is generally composed by high yields of epithermal sulphide mineralization. with Cu-Au mineralization This high epithermal sulphide deposition coats the upper part of the Cu-Au porphyry precipitate associated with mineralization processes that are generally controlled by the structure


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 545
Author(s):  
Andrei Y. Barkov ◽  
Nadezhda D. Tolstykh ◽  
Robert F. Martin ◽  
Andrew M. McDonald

Tamuraite, ideally Ir5Fe10S16, occurs as discrete phases (≤20 μm) in composite inclusions hosted by grains of osmium (≤0.5 mm across) rich in Ir, in association with other platinum-group minerals in the River Ko deposit of the Sisim Placer Zone, southern Krasnoyarskiy Kray, Russia. In droplet-like inclusions, tamuraite is typically intergrown with Rh-rich pentlandite and Ir-bearing members of the laurite–erlichmanite series (up to ~20 mol.% “IrS2”). Tamuraite is gray to brownish gray in reflected light. It is opaque, with a metallic luster. Its bireflectance is very weak to absent. It is nonpleochroic to slightly pleochroic (grayish to light brown tints). It appears to be very weakly anisotropic. The calculated density is 6.30 g·cm−3. The results of six WDS analyses are Ir 29.30 (27.75–30.68), Rh 9.57 (8.46–10.71), Pt 1.85 (1.43–2.10), Ru 0.05 (0.02–0.07), Os 0.06 (0.03–0.13), Fe 13.09 (12.38–13.74), Ni 12.18 (11.78–13.12), Cu 6.30 (6.06–6.56), Co 0.06 (0.04–0.07), S 27.23 (26.14–27.89), for a total of 99.69 wt %. This composition corresponds to (Ir2.87Rh1.75Pt0.18Ru0.01Os0.01)Σ4.82(Fe4.41Ni3.90Cu1.87Co0.02)Σ10.20S15.98, calculated based on a total of 31 atoms per formula unit. The general formula is (Ir,Rh)5(Fe,Ni,Cu)10S16. Results of synchrotron micro-Laue diffraction studies indicate that tamuraite is trigonal. Its probable space group is R–3m (#166), and the unit-cell parameters are a = 7.073(1) Å, c = 34.277(8) Å, V = 1485(1) Å3, and Z = 3. The c:a ratio is 4.8462. The strongest eight peaks in the X-ray diffraction pattern [d in Å(hkl)(I)] are: 3.0106(26)(100), 1.7699(40)(71), 1.7583(2016)(65), 2.7994(205)(56), 2.9963(1010)(50), 5.7740(10)(45), 3.0534(20)(43) and 2.4948(208)(38). The crystal structure is derivative of pentlandite and related to that of oberthürite and torryweiserite. Tamuraite crystallized from a residual melt enriched in S, Fe, Ni, Cu, and Rh; these elements were incompatible in the Os–Ir alloy that nucleated in lode zones of chromitites in the Lysanskiy layered complex, Eastern Sayans, Russia. The name honors Nobumichi Tamura, senior scientist at the Advanced Light Source of the Lawrence Berkeley National Laboratory, Berkeley, California.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 250
Author(s):  
Chuanpeng Liu ◽  
Wenjie Shi ◽  
Junhao Wei ◽  
Huan Li ◽  
Aiping Feng ◽  
...  

The Longquanzhan deposit is one of the largest gold deposits in the Yi-Shu fault zone (central section of the Tan-Lu fault zone) in Shandong Province, China. It is an altered-rock type gold deposit in which ore bodies mainly occur at the contact zone between the overlying Cretaceous rocks and the underlying Neoarchean gneissic monzogranite. Shi et al. reported that this deposit formed at 96 ± 2 Ma using pyrite Rb–Sr dating method and represents a new gold mineralization event in the Shandong Province in 2014. In this paper, we present new He–Ar–S isotopic compositions to further decipher the sources of fluids responsible for the Longquanzhan gold mineralization. The results show that the δ34S values of pyrites vary between 0.9‰ and 4.4‰ with an average of 2.3‰. Inclusion-trapped fluids in ore sulfides have 3He/4He and 40Ar/36Ar ratios of 0.14–0.78 Ra and 482–1811, respectively. These isotopic data indicate that the ore fluids are derived from a magmatic source, which is dominated by crustal components with minor mantle contribution. Air-saturated water may be also involved in the hydrothermal system during the magmatic fluids ascending or at the shallow deposit site. We suggest that the crust-mantle mixing signature of the Longquanzhan gold deposit is genetically related to the Late Cretaceous lithospheric thinning along the Tan-Lu fault zone, which triggers constantly uplifting of the asthenosphere surface and persistent ascending of the isotherm plane to form the gold mineralization-related crustal level magma sources. This genetic model can be applied, to some extent, to explain the ore genesis of other deposits near or within the Tan-Lu fault belt.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 966
Author(s):  
Baptiste Madon ◽  
Lucie Mathieu ◽  
Jeffrey H. Marsh

Neoarchean syntectonic intrusions from the Chibougamau area, northeastern Abitibi Subprovince (greenstone belt), may be genetically related to intrusion related gold mineralization. These magmatic-hydrothermal systems share common features with orogenic gold deposits, such as spatial and temporal association with syntectonic magmatism. Genetic association with magmatism, however, remains controversial for many greenstone belt hosted Au deposits. To precisely identify the link between syntectonic magmas and gold mineralization in the Abitibi Subprovince, major and trace-element compositions of whole rock, zircon, apatite, and amphibole grains were measured for five intrusions in the Chibougamau area; the Anville, Saussure, Chevrillon, Opémisca, and Lac Line Plutons. The selected intrusions are representative of the chemical diversity of synvolcanic (TTG suite) and syntectonic (e.g., sanukitoid, alkaline intrusion) magmatism. Chemical data enable calculation of oxygen fugacity and volatile content, and these parameters were interpreted using data collected by electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. The zircon and apatite data and associated oxygen fugacity values in magma indicate that the youngest magmas are the most oxidized. Moreover, similar oxygen fugacity and high volatile content for both the Saussure Pluton and the mineralized Lac Line intrusion may indicate a possible prospective mineralized system associated with the syntectonic Saussure intrusion.


Sign in / Sign up

Export Citation Format

Share Document