Kenoplumbomicrolite, (Pb,□)2Ta2O6[□,(OH),O], a new mineral from Ploskaya, Kola Peninsula, Russia

2018 ◽  
Vol 82 (5) ◽  
pp. 1049-1055 ◽  
Author(s):  
Daniel Atencio ◽  
Marcelo B. Andrade ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Matteo Zoppi ◽  
...  

ABSTRACTThis study presents a complete characterization of kenoplumbomicrolite, (Pb,□)2Ta2O6[□,(OH),O], occurring in an amazonite pegmatite from Ploskaya Mountain, Western Keivy Massif, Kola Peninsula, Murmanskaja Oblast, Northern Region, Russia.Kenoplumbomicrolite occurs in yellowish brown octahedral, cuboctahedral and massive crystals, up to 20 cm, has a white streak, a greasy lustre and is translucent. The Mohs hardness is ~6. Attempts to measure density (7.310–7.832 g/cm3) were affected by the ubiquitous presence of uraninite inclusions. Reflectance values were measured in air and immersed in oil. Kenoplumbocrolite is optically isotropic. The empirical formula is (Pb1.30□0.30Ca0.29Na0.08U0.03)Σ2.00(Ta0.82Nb0.62Si0.23Sn4+0.15Ti0.07Fe3+0.10Al0.01)Σ2.00O6[□0.52(OH)0.25O0.23]Σ1.00 (from the crystal used for the structural study) and (Pb1.33□0.66Mn0.01)Σ2.00(Ta0.87Nb0.72Sn4+0.18Fe3+0.11W0.08Ti0.04)Σ2.00O6[□0.80(OH)0.10O0.10]Σ1.00 (average including additional fragments). The mineral is cubic, space group Fd$\overline 3 $m. The unit-cell parameters refined from powder X-ray diffraction data are a = 10.575(2) Å and V = 1182.6(8) Å3, which are in accord with those obtained previously from a single crystal of a = 10.571(1) Å, V = 1181.3(2) Å3 and Z = 8. The mineral description and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2015-007a).

2017 ◽  
Vol 81 (1) ◽  
pp. 175-181 ◽  
Author(s):  
Elena Sokolova ◽  
Fernando Cámara ◽  
Frank C. Hawthorne ◽  
Evgeny I. Semenov ◽  
Marco E. Ciriotti

AbstractLobanovite, K2Na(Fe42+Mg2Na)Ti2(Si4O12)2O2(OH)4, is a new mineral of the astrophyllite supergroup from Mt. Yukspor, the Khibiny alkaline massif, Kola Peninsula Russia. It has been known previously under the following names: monoclinic astrophyllite, magnesium astrophyllite, magnesiumastrophyllite and magnesioastrophyllite but has never been formally proposed and approved as a valid mineral species by the Commission on new Minerals, Nomenclature and Classification of the International Mineralogical Association. It has now been revalidated and named lobanovite after Dr. Konstantin V. Lobanov, a prominent Russian ore geologist who worked in the Kola Peninsula for more than forty years (Nomenclature voting proposal 15-B). Lobanovite has been described from pegmatitic cavities on Mt. Yukspor where it occurs as elongated bladed crystals, up to 0.04 mm wide and 0.2 mm long, with a straw yellow to orange colour. Associated minerals are shcherbakovite, lamprophyllite, delindeite, wadeite, umbite and kostylevite. Lobanovite is biaxial (–) with refractive indices (λ = 589 nm) α = 1.658, βcalc. = 1.687, γ = 1.710; 2Vmeas. = 81.5– 83°. Lobanovite is monoclinic, space group C2/m, a = 5.3327(2), b = 23.1535(9), c = 10.3775(4) Å, β = 99.615(1)°, V = 1263.3 (1) Å 3, Z = 2. The six strongest reflections in the powder X-ray diffraction data [d (Å), I, (hkl)] are: 3.38, 100, (003); 2.548, 90, (063); 10.1, 80, (001); 3.80, 60, (042,131); 3.079, 50, (132,062); 2.763, 90, (1̄71). The chemical composition of lobanovite was determined by electron-microprobe analysis and the empirical formula (K1.97Ba0.01)∑1.98(Na0.65Ca0.14)∑0.79 (Fe3.182+Mg2.02Na1.00Mn0.72)∑6.92(Ti1.99Nb0.06)∑2.05[(Si8.01Al0.06)∑8.07O24]O2(OH)4.03F0.19 was calculated on the basis of 30.2 (O + OH + F) anions, with H2O calculated from structure refinement, Dcalc. = 3.161 g cm–3. In the structure of lobanovite, the main structural unit is the HOH block, which consists of one close-packed O (Octahedral) and two H (Heteropolyhedral) sheets. The M(1–4) octahedra form the O sheet and the T4O12 astrophyllite ribbons and [5]-coordinated Ti-dominant D polyhedra link through common vertices to form the H sheet. The HOH blocks repeat along [001], and K and Na atoms occur at the interstitial A and B sites. The simplified and end-member formulae of lobanovite are K2Na [(Fe2+,Mn)4Mg2Na]Ti2(Si4O12)2O2(OH)4 and K2Na(Fe42+Mg2Na)Ti2(Si4O12)2O2(OH)4, respectively.


2020 ◽  
Vol 58 (4) ◽  
pp. 421-436 ◽  
Author(s):  
Nikita V. Chukanov ◽  
Sergey M. Aksenov ◽  
Igor V. Pekov ◽  
Dmitriy I. Belakovskiy ◽  
Svetlana A. Vozchikova ◽  
...  

ABSTRACT The new eudialyte-group mineral sergevanite, ideally Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3·H2O, was discovered in highly agpaitic foyaite from the Karnasurt Mountain, Lovozero alkaline massif, Kola Peninsula, Russia. The associated minerals are microcline, albite, nepheline, arfvedsonite, aegirine, lamprophyllite, fluorapatite, steenstrupine-(Ce), ilmenite, and sphalerite. Sergevanite forms yellow to orange-yellow anhedral grains up to 1.5 mm across and the outer zones of some grains of associated eudialyte. Its luster is vitreous, and the streak is white. No cleavage is observed. The Mohs' hardness is 5. Density measured by equilibration in heavy liquids is 2.90(1) g/cm3. Calculated density is equal to 2.906 g/cm3. Sergevanite is nonpleochroic, optically uniaxial, positive, with ω = 1.604(2) and ε = 1.607(2) (λ = 589 nm). The infrared spectrum is given. The chemical composition of sergevanite is (wt.%; electron microprobe, H2O determined by HCN analysis): Na2O 13.69, K2O 1.40, CaO 7.66, La2O3 0.90, Ce2O3 1.41, Pr2O3 0.33, Nd2O3 0.64, Sm2O3 0.14, MnO 4.15, FeO 1.34, TiO2 1.19, ZrO2 10.67, HfO2 0.29, Nb2O5 1.63, SiO2 49.61, SO3 0.77, Cl 0.23, H2O 4.22, –O=Cl –0.05, total 100.22. The empirical formula (based on 25.5 Si atoms pfu, in accordance with structural data) is H14.46Na13.64K0.92Ca4.22Ce0.27La0.17Nd0.12Pr0.06Sm0.02Mn1.81Fe2+0.58Ti0.46Zr2.67Hf0.04Nb0.38Si25.5S0.30Cl0.20O81.35. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3, with a = 14.2179(1) Å, c = 30.3492(3) Å, V = 5313.11(7) Å3, and Z = 3. In the structure of sergevanite, Ca and Mn are ordered in the six-membered ring of octahedra (at the sites M11 and M12), and Na dominates over Fe2+ at the M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 7.12 (70) (110), 5.711 (43) (202), 4.321 (72) (205), 3.806 (39) (033), 3.551 (39) (220, 027), 3.398 (39) (313), 2.978 (95) (), 2.855 (100) (404). Sergevanite is named after the Sergevan' River, which is near the discovery locality.


2020 ◽  
Vol 84 (3) ◽  
pp. 381-389
Author(s):  
Dan Holtstam ◽  
Fernando Cámara ◽  
Andreas Karlsson

AbstractLanghofite, ideally Pb2(OH)[WO4(OH)], is a new mineral from the Långban mine, Värmland, Sweden. The mineral and its name were approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA2019-005). It occurs in a small vug in hematite–pyroxene skarn associated with calcite, baryte, fluorapatite, mimetite and minor sulfide minerals. Langhofite is triclinic, space group P$\bar{1}$, and unit-cell parameters a = 6.6154(1) Å, b = 7.0766(1) Å, c = 7.3296(1) Å, α = 118.175(2)°, β = 94.451(1)°, γ = 101.146(1)° and V = 291.06(1) Å3 for Z = 2. The seven strongest Bragg peaks from powder X-ray diffractometry are [dobs, Å (I)(hkl)]: 6.04(24)(010), 3.26(22)(11$\bar{2}$), 3.181(19)(200), 3.079(24)(1$\bar{1}$2), 3.016(100)(020), 2.054(20)(3$\bar{1}$1) and 2.050(18)(13$\bar{2}$). Langhofite occurs as euhedral crystals up to 4 mm, elongated along the a axis, with lengthwise striation. Mohs hardness is ca. 2½, based on VHN25 data obtained in the range 130–192. The mineral is brittle, with perfect {010} and {100} cleavages. The calculated density based on the ideal formula is 7.95(1) g⋅cm–3. Langhofite is colourless to white (non-pleochroic) and transparent, with a white streak and adamantine lustre. Reflectance curves show normal dispersion, with maximum values 15.7–13.4% within 400–700 nm. Electron microprobe analyses yield only the metals Pb and W above the detection level. The presence of OH-groups is demonstrated with vibration spectroscopy, from band maxima present at ~3470 and 3330 cm–1. A distinct Raman peak at ca. 862 cm–1 is related to symmetric W–oxygen stretching vibrations. The crystal structure is novel and was refined to R = 1.6%. It contains [W2O8(OH)2]6– edge-sharing dimers (with highly distorted WO6-octahedra) forming chains along [101] with [(OH)2Pb4]6+ dimers formed by (OH)Pb3 triangles. Chains configure (010) layers linked along [010] by long and weak Pb–O bonds, thus explaining the observed perfect cleavage on {010}. The mineral is named for curator Jörgen Langhof (b. 1965), who collected the discovery sample.


2017 ◽  
Vol 81 (2) ◽  
pp. 319-327 ◽  
Author(s):  
Anthony R. Kampf ◽  
Barbara P. Nash ◽  
Joe Marty ◽  
John M. Hughes

AbstractMesaite (IMA2015-069), ideally (V2O7)3·12H2O, is a new mineral from the Packrat mine, Gateway district, Mesa County, Colorado, USA. Crystals of mesaite occur as orangish red blades up to 0.1 mm long and ∼10 μm thick. The streak is light pinkish orange and the lustre is vitreous, transparent. Mesaite has a brittle tenacity, {010} perfect cleavage; fracture is irregular, and no parting was observed. The mineral has a Mohs hardness ≈ 2. The measured density of mesaite is 2.74(1) g cm–3. Mesaite is biaxial (–), α = 1.760(calc), β = 1.780(5), γ = 1.795(5) in white light; the measured 2V value = 81(2)°. Dispersion is strong, r < v, and pleochroism is present in shades of brownish orange. Mesaite is monoclinic, P2/n, with a = 9.146(2), b = 10.424(3), c = 15.532(4) Å, β = 102.653(7)° and V = 1444.7(6) Å3. The strongest four diffraction lines in the powder diffraction pattern are [(dobs in Å, (Iobs), (hkl)]: 10.47 (100) (010), 2.881 (25) (132, 3̄12, 033, 310), 3.568 (24) (1̄14, 1̄23, 2̄13), 3.067 (17) (1̄24, 1̄32, 2̄23). The composition of mesaite was determined by electron microprobe, and yielded an empirical formula of Mn5.32Ca0.56Zn0.31V5.96As0.04O33H23.61 on the basis of 33 O atoms per formula unit (apfu).The atomic arrangement of mesaite was solved and refined to R1 = 0.0600. The structure is formed of zigzag octahedral chains of edge-sharing Mn2+O6 octahedra. Oxygen atoms of the octahedra are shared with V2O7 groups, which link with adjacent octahedral chains to form {010} heteropolyhedral layers. The interlayer region contains Ca atoms and H2O groups. Each Ca bonds to two O6 atoms in the heteropolyhedral layer and to two fully occupied and six partially occupied O (H2O) sites in the interlayer, resulting in an effective Ca coordination of approximately seven. Similar zigzag chains of edge-sharing MnO6 octahedra decorated with V2O7 groups are also found in the mineral fianelite. Mesaite has beenapproved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2015-069). The name mesaite is conferred for Mesa County, Colorado, USA.


2017 ◽  
Vol 81 (1) ◽  
pp. 167-173
Author(s):  
G. O. Lepore ◽  
L. Bindi ◽  
F. Di Benedetto ◽  
E. Mugnaioli ◽  
C. Viti ◽  
...  

AbstractIn the manganesiferous ores associated with the metacherts of the ophiolitic sequences at the Cerchiara mine, Eastern Liguria (Italy), a new Mn-bearing mineral belonging to the mica group has been recently found and characterized. High resolution transmission electron microscopy and electron diffraction tomography studies confirm that the mineral belongs to the mica group. Unit-cell parameters from the powder diffraction pattern are:a= 5.149(1),b= 8.915(1),c= 10.304(1) Å, β = 102.03(1)°, space groupC2 orC2/m. On the basis of the electron paramagnetic resonance spectroscopic results, the Mn4+content represents a very subordinate fraction of the total Mn, the remaining occurring as Mn3+. The Raman spectrum clearly indicates the presence of OH groups in the structure. Laser-ablation inductively-coupled-plasma mass-spectrometry measurements assess the presence of considerable amounts of Li.Assuming all Mn as Mn3+and 22 negative charges, the empirical formula can be expressed as: (K0.83□0.17)(Mn1.143+Mg0.80Li0.20Fe0.023+)(Si3.89Al0.10)O10[(OH)1.92F0.08] with the sum of the octahedral cations indicating a 'transitional' character between a di- and a tri-octahedral structure. This formula corresponds ideally to the Mn3+analogue of celadonite, thus expanding the range of solid solution in the celadonite family. The ideal end-member formula KMn3+MgSi4O10(OH)2can be easily related to celadonite by the homovalent substitutionVIMn3+→VIFe3+. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, (IMA 2015-052).


2017 ◽  
Vol 81 (1) ◽  
pp. 155-166 ◽  
Author(s):  
Hans-Peter Bojar ◽  
Franz Walter ◽  
Judith Baumgartner

AbstractThe new mineral joanneumite was found at Pabellón de Pica Mountain, Iquique Province, Tarapacá Region, Chile, where it occurs as violet microcrystalline aggregates up to 2 mm in size in small cracks in a gabbroic rock, which is covered by a guano deposit. Associated minerals are salammoniac, dittmarite, möhnite and gypsum. Joanneumite is non-fluorescent and the Mohs hardness is 1. The calculated density is 2.020 g cm–3. The infrared spectrum of joanneumite shows the frequencies of NH3 and isocyanurate groups and the absence of absorptions of H2O molecules and OH– ions. The chemical composition (electron microprobe data, the hydrogen was calculated from the structural formula, wt.%) is C 20.33, N 31.11, O 28.34, Cu 17.27, Zn 0.24, H 2.82, total 100.11. The empirical formula is Cu0.96Zn0.01N7.84C5.98O6.25H9.96 and the idealized formula is CuN8C6O6H10 with the structural formula Cu(C3N3O3H2)2(NH3)2. Due to the lack of suitable single crystals the synthetic analogue of joanneumite was prepared for the single-crystal structure refinement. The crystal structure was solved and refined to R = 0.025 based upon 1166 unique reflections with I > 2σ (I). Joanneumite is triclinic, space group P1̄, a = 4.982(1), b = 6.896(1), c = 9.115(2) Å, α = 90.53(3), β = 97.85(3), γ = 110.08(3)°, V = 290.8(1) Å3, Z = 1 obtained from single-crystal data at 100 K, which are in good agreement with cell parameters from powder diffraction data of joanneumite at 293 K: a = 5.042(1), b = 6.997(1), c = 9.099(2) Å, α = 90.05(3), β = 98.11(2), γ = 110.95(3)° and V = 296.3(1) Å3. The eight strongest lines of the powder X-ray diffraction pattern are [d, Å (I,%) (hkl)] 6.52 (68) (010), 5.15 (47) (011), 4.66 (21) (100, 110), 4.35 (9) (1̄11), 3.29 (6) (1̄20), 3.22 (7) (1̄1̄1), 3.140 (100) (1̄21), 2.074 (7) (1̄32). The crystal structure of joanneumite is identical with the structure of synthetic bis(isocyanurato) diamminecopper(II).


2019 ◽  
Vol 83 (4) ◽  
pp. 507-514
Author(s):  
Peter Elliott ◽  
Jakub Plášil ◽  
Václav Petříček ◽  
Jiří Čejka ◽  
Luca Bindi

ABSTRACTBaumoite, Ba0.5[(UO2)3O8Mo2(OH)3](H2O)~3, is a new mineral found near Radium Hill, South Australia, where it occurs in a granite matrix associated with baryte, metatorbernite, phurcalite and kaolinite. Baumoite forms thin crusts of yellow to orange–yellow tabular to prismatic crystals. The mineral is translucent with a vitreous lustre and pale yellow streak. Crystals are brittle, the fracture is uneven and show one excellent cleavage. The Mohs hardness is ~2½. The calculated density is 4.61 g/cm3. Optically, baumoite crystals are biaxial (–), with α = 1.716(4), β = 1.761(4), γ = 1.767(4) (white light); and 2Vcalc= 42.2°. Electron microprobe analyses gave the empirical formula Ba0.87Ca0.03Al0.04U2.97Mo2.02P0.03O22H11.99, based on 22 O atoms per formula unit. The eight strongest lines in the powder X-ray diffraction pattern are [dobsÅ (I) (hkl)]: 9.175(39)(12${\bar 1}$), 7.450(100)(020), 3.554(20)(221), 3.365(31)(004, 202), 3.255(31)(123, 30${\bar 2}$), 3.209(28)(12${\bar 4}$), 3.067(33)(30${\bar 3}$, 222, 32${\bar 2}$) and 2.977(20)(142). Single-crystal X-ray studies (R1= 5.85% for 1892 main reflections) indicate that baumoite is monoclinic, superspace groupX2/m(a0g)0swithX= (0,½,0,½), with unit-cell parameters:a= 9.8337(3),b= 15.0436(5),c= 14.2055(6) Å, β = 108.978(3)°,V= 1987.25(13) Å3andZ= 4. The crystal structure is twinned and incommensurately modulated and is based upon sheets of U6+and Mo6+polyhedra of unique topology. Four independent cationic sites partially occupied by Ba atoms are located between the sheets, together with H2O molecules.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 194
Author(s):  
Marta Morana ◽  
Luca Bindi

Here we describe a new mineral in the Cu-Ag-Te system, spiridonovite. The specimen was discovered in a fragment from the cameronite [ideally, Cu5-x(Cu,Ag)3+xTe10] holotype material from the Good Hope mine, Vulcan, Colorado (U.S.A.). It occurs as black grains of subhedral to anhedral morphology, with a maximum size up to 65 μm, and shows black streaks. No cleavage is observed and the Vickers hardness (VHN100) is 158 kg·mm-2. Reflectance percentages in air for Rmin and Rmax are 38.1, 38.9 (471.1 nm), 36.5, 37.3 (548.3 nm), 35.8, 36.5 (586.6 nm), 34.7, 35.4 (652.3 nm). Spiridonovite has formula (Cu1.24Ag0.75)Σ1.99Te1.01, ideally (Cu1-xAgx)2Te (x ≈ 0.4). The mineral is trigonal and belongs to the space group P-3c1, with the following unit-cell parameters: a = 4.630(2) Å, c = 22.551(9) Å, V = 418.7(4) Å 3, and Z = 6. The crystal structure has been solved and refined to R1 = 0.0256. It can be described as a rhombohedrally-compressed antifluorite structure, with a rough ccp arrangement of Te atoms. It consists of two Te sites and three M (metal) sites, occupied by Cu and Ag, and is characterized by the presence of edge-sharing tetrahedra, where the four-fold coordinated M atoms lie. The mineral and its name have been approved by the Commission of New Minerals, Nomenclature and Classification of the International Mineralogical Association (No. 2018-136).


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 449 ◽  
Author(s):  
Nikita Chukanov ◽  
Natalia Zubkova ◽  
Sergey Britvin ◽  
Igor Pekov ◽  
Marina Vigasina ◽  
...  

The new mineral nöggerathite-(Ce) was discovered in a sanidinite volcanic ejectum from the Laach Lake (Laacher See) paleovolcano in the Eifel region, Rhineland-Palatinate, Germany. Associated minerals are sanidine, dark mica, magnetite, baddeleyite, nosean, and a chevkinite-group mineral. Nöggerathite-(Ce) has a color that ranges from brown to deep brownish red, with adamantine luster; the streak is brownish red. It occurs in cavities of sanidinite and forms long prismatic crystals measuring up to 0.02 × 0.03 × 1.0 mm, with twins and random intergrowths. Its density calculated using the empirical formula is 5.332 g/cm3. The Vickers hardness number (VHN) is 615 kgf/mm2, which corresponds to a Mohs’ hardness of 5½. The mean refractive index calculated using the Gladstone–Dale equation is 2.267. The Raman spectrum shows the absence of hydrogen-bearing groups. The chemical composition (electron microprobe holotype/cotype in wt %) is as follows: CaO 5.45/5.29, MnO 4.19/4.16, FeO 7.63/6.62, Al2O3 0.27/0.59, Y2O3 0.00/0.90, La2O3 3.17/3.64, Ce2O3 11.48/11.22, Pr2O3 1.04/0.92, Nd2O3 2.18/2.46, ThO2 2.32/1.98, TiO2 17.78/18.69, ZrO2 27.01/27.69, Nb2O5 17.04/15.77, total 99.59/99.82, respectively. The empirical formulae based on 14 O atoms per formula unit (apfu) are: (Ce0.59La0.165Nd0.11Pr0.05)Σ0.915Ca0.82Th0.07Mn0.50Fe0.90Al0.045Zr1.86Ti1.88Nb1.07O14 (holotype), and (Ce0.57La0.19Nd0.12Pr0.05Y0.06)Σ0.99Ca0.79Th0.06Mn0.49Fe0.77Al0.10Zr1.89Ti1.96Nb1.00O14 (cotype). The simplified formula is (Ce,Ca)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14. Nöggerathite-(Ce) is orthorhombic, of the space group Cmca. The unit cell parameters are: a = 7.2985(3), b = 14.1454(4), c = 10.1607(4) Å, and V = 1048.99(7) Å3. The crystal structure was solved using single-crystal X-ray diffraction data. Nöggerathite-(Ce) is an analogue of zirconolite-3O, ideally CaZrTi2O7, with Nb dominant over Ti in one of two octahedral sites and REE dominant over Ca in the eight-fold coordinated site. The strongest lines of the powder X-ray diffraction pattern (d, Å (I, %) (hkl)) are: 2.963 (91) (202), 2.903 (100) (042), 2.540 (39) (004), 1.823 (15) (400), 1.796 (51) (244), 1.543 (20) (442), and 1.519 (16) (282), respectively. The type material is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia (registration number 5123/1).


2020 ◽  
pp. 1-8
Author(s):  
Anatoly V. Kasatkin ◽  
Natalia V. Zubkova ◽  
Igor V. Pekov ◽  
Nikita V. Chukanov ◽  
Radek Škoda ◽  
...  

Abstract The new mineral percleveite-(La) (IMA2019–037), ideally La2Si2O7, was found in polymineralic nodules of the Mochalin Log REE deposit, Chelyabinsk Oblast, South Urals, Russia. It is associated with allanite-(Ce), allanite-(La), bastnäsite-(Ce), bastnäsite-(La), ferriallanite-(Ce), ferriallanite-(La), ferriperbøeite-(Ce), ferriperbøeite-(La), fluorbritholite-(Ce), hydroxylbastnäsite-(Ce), perbøeite-(Ce), perbøeite-(La), törnebohmite-(Ce) and törnebohmite-(La). Percleveite-(La) occurs as isolated anhedral grains commonly up to 0.2 mm × 0.4 mm and very rarely up to 1 mm × 1 mm. The new mineral is transparent with greasy lustre. The mineral is very pale yellow to colourless in thin fragments to light yellow in aggregates. It is brittle, with imperfect {001} cleavage and an uneven fracture. Mohs’ hardness is ca. 6. Dcalc = 5.094 g cm–3. Under the microscope, percleveite-(La) is non-pleochroic, optically uniaxial (+), ω = 1.825(10) and ɛ = 1.835(10). The Raman spectrum is given. Chemical data (wt.%, electron-microprobe) are: La2O3 36.80, Ce2O3 31.22, Pr2O3 1.57, Nd2O3 2.96, SiO2 26.73, total 99.28. The empirical formula based on 7 O apfu is (La1.02Ce0.86Nd0.08Pr0.04)Σ2.00Si2.00O7. Percleveite-(La) is tetragonal, P41; the unit-cell parameters are: a = 6.8482(3), c = 24.8550(13) Å, V = 1165.64(11) Å3 and Z = 8. The strongest reflections in the powder X-ray diffraction pattern [d, Å(I)(hkl)] are: 4.194(18)(113), 3.564(16)(106), 3.349(16)(201,202), 3.157(100)(203,116,008), 3.043(22)(211), 2.934(39)(122), 2.893(29)(213) and 2.864(21)(117). The crystal structure of percleveite-(La) is solved from the single-crystal X-ray diffraction data [R = 0.0617 for 2831 unique reflections with I > 2σ(I)]. The new mineral is named as an analogue of percleveite-(Ce) with La predominance over the rare-earth elements.


Sign in / Sign up

Export Citation Format

Share Document