Generation and genetic modification of dendritic cells derived from mouse embryonic stem cells

Blood ◽  
2003 ◽  
Vol 101 (9) ◽  
pp. 3501-3508 ◽  
Author(s):  
Satoru Senju ◽  
Shinya Hirata ◽  
Hidetake Matsuyoshi ◽  
Masako Masuda ◽  
Yasushi Uemura ◽  
...  

We developed a method to generate dendritic cells (DCs) from mouse embryonic stem (ES) cells. We cultured ES cells for 10 days on feeder cell layers of OP9, in the presence of granulocyte-macrophage colony-stimulating factor in the latter 5 days. The resultant ES cell–derived cells were transferred to bacteriologic Petri dishes without feeder cells and further cultured. In about 7 days, irregularly shaped floating cells with protrusions appeared and these expressed major histocompatibility complex class II, CD11c, CD80, and CD86, with the capacity to stimulate primary mixed lymphocyte reaction (MLR) and to process and present protein antigen to T cells. We designated them ES-DCs (ES cell–derived dendritic cells), and the functions of ES-DCs were comparable with those of DCs generated from bone marrow cells. Upon transfer to new dishes and stimulation with interleukin-4 plus tumor necrosis factor α, combined with anti-CD40 monoclonal antibody or lipopolysaccharide, ES-DCs completely became mature DCs, characterized by a typical morphology and higher capacity to stimulate MLR. Using an expression vector containing the internal ribosomal entry site–puromycinN-acetyltransferase gene or a Cre-lox–mediated exchangeable gene-trap system, we could efficiently generate ES cell transfectants expressing the products of introduced genes after their differentiation to DCs. ES-DCs expressing invariant chain fused to a pigeon cytochrome C epitope presented the epitope efficiently in the context of Ek. We primed ovalbumin (OVA)–specific cytotoxic T lymphocytes in vivo by injecting mice with ES-DCs expressing OVA, thus demonstrating immunization with ES-DCs genetically engineered to express antigenic protein. The methods may be applicable to immunomodulation therapy and gene-trap investigations of DCs.

Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 157-165 ◽  
Author(s):  
R. S. P. Beddington ◽  
P. Rashbass ◽  
V. Wilson

Mouse embryos that are homozygous for the Brachyury (T) deletion die at mid-gestation. They have prominent defects in the notochord, the allantois and the primitive streak. Expression of the T gene commences at the onset of gastrulation and is restricted to the primitive streak, mesoderm emerging from the streak, the head process and the notochord. Genetic evidence has suggested that there may be an increasing demand for T gene function along the rostrocaudal axis. Experiments reported here indicate that this may not be the case. Instead, the gradient in severity of the T defect may be caused by defective mesoderm cell movements, which result in a progressive accumulation of mesoderm cells near the primitive streak. Embryonic stem (ES) cells which are homozygous for the T deletion have been isolated and their differentiation in vitro and in vivo compared with that of heterozygous and wild-type ES cell lines. In +/+ ↔ T/T ES cell chimeras the Brachyury phenotype is not rescued by the presence of wild-type cells and high level chimeras show most of the features characteristic of intact T/T mutants. A few offspring from blastocysts injected with T/T ES cells have been born, several of which had greatly reduced or abnormal tails. However, little or no ES cell contribution was detectable in these animals, either as coat colour pigmentation or by isozyme analysis. Inspection of potential +/+ ↔ T/T ES cell chimeras on the 11th or 12th day of gestation, stages later than that at which intact T/T mutants die, revealed the presence of chimeras with caudal defects. These chimeras displayed a gradient of ES cell colonisation along the rostrocaudal axis with increased colonisation of caudal regions. In addition, the extent of chimerism in ectodermal tissues (which do not invaginate during gastrulation) tended to be higher than that in mesodermal tissues (which are derived from cells invaginating through the primitive streak). These results suggest that nascent mesoderm cells lacking the T gene are compromised in their ability to move away from the primitive streak. This indicates that one function of the T genemay be to regulate cell adhesion or cell motility properties in mesoderm cells. Wild-type cells in +/+ ↔ T/T chimeras appear to move normally to populate trunk and head mesoderm, suggesting that the reduced motility in T/T cells is a cell autonomous defect


Development ◽  
1998 ◽  
Vol 125 (12) ◽  
pp. 2273-2282 ◽  
Author(s):  
W. Dean ◽  
L. Bowden ◽  
A. Aitchison ◽  
J. Klose ◽  
T. Moore ◽  
...  

In vitro manipulation of preimplantation mammalian embryos can influence differentiation and growth at later stages of development. In the mouse, culture of embryonic stem (ES) cells affects their totipotency and may give rise to fetal abnormalities. To investigate whether this is associated with epigenetic alterations in imprinted genes, we analysed two maternally expressed genes (Igf2r, H19) and two paternally expressed genes (Igf2, U2af1-rs1) in ES cells and in completely ES cell-derived fetuses. Altered allelic methylation patterns were detected in all four genes, and these were consistently associated with allelic changes in gene expression. All the methylation changes that had arisen in the ES cells persisted on in vivo differentiation to fetal stages. Alterations included loss of methylation with biallelic expression of U2af1-rs1, maternal methylation and predominantly maternal expression of Igf2, and biallelic methylation and expression of Igf2r. In many of the ES fetuses, the levels of H19 expression were strongly reduced, and this biallelic repression was associated with biallellic methylation of the H19 upstream region. Surprisingly, biallelic H19 repression was not associated with equal levels of Igf2 expression from both parental chromosomes, but rather with a strong activation of the maternal Igf2 allele. ES fetuses derived from two of the four ES lines appeared developmentally compromised, with polyhydramnios, poor mandible development and interstitial bleeding and, in chimeric fetuses, the degree of chimerism correlated with increased fetal mass. Our study establishes a model for how early embryonic epigenetic alterations in imprinted genes persist to later developmental stages, and are associated with aberrant phenotypes.


2008 ◽  
Vol 20 (9) ◽  
pp. 58
Author(s):  
G. R. Kafer ◽  
SA Lehnert ◽  
P. L. Kaye ◽  
R. J. Moser

Histone variants replace canonical histones in nucleosomes to serve numerous biological processes. This integration alters DNA properties to ultimately regulate gene expression. Previous mouse studies have indicated that some variants (H2AZ and H3.3) are essential for survival, but here we document and correlate histone expression patterns with key developmental events. Using quantitative reverse-transcribed PCR (qRT–PCR) we investigated the expression of 7 genes coding for H2A variants and 4 genes coding for H3 variants in mouse preimplantation embryos and in pluripotent R1 ES cells. Messenger RNA was extracted from pools of 3 embryos flushed from superovulated mice. Embryos were collected at five stages, zygotes, 2-cell embryos, morulae, blastocysts and hatching blastocysts (20 h, 44 h, 68 h, 92 h and 116 h post hCG respectively). The expression of H2A variant genes typically peaked within blastocysts. H2AZ and H2AX expression was 80 – 95% higher in blastocysts than other stages. Conversely, genes coding for H3 variants showed elevated expression in zygotes, where H3.3 expression was 85 – 95% higher and CENPA was ~75% higher than in later preimplantation stages. The expression profiles of histone remodellers SWI/SNF and CAF-1 correlated with the variants they are known to remodel (H2A and H3 variants respectively), suggesting an increased integration of those variants into nucleosomes. We also compared blastocyst and embryonic stem cell (ES cell) expression patterns. R1 ES cells express all histone variants, including H2A.Bbd, H3.1 and H3.2 which were not expressed in preimplantation embryos. Further, expression levels of every histone variant investigated differed significantly between R1 ES cells and hatching blastocysts (ANOVA, P < 0.05, n = 3 experiments). We conclude that histone variant expression reflects preimplantation developmental demands. Further, histone code expression profiles show significant change upon extended cell culture and maintenance of pluripotency as indicated by comparing in vivo hatching blastocysts to the R1 ES cell line.


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4622-4631 ◽  
Author(s):  
William L. Stanford ◽  
Georgina Caruana ◽  
Katherine A. Vallis ◽  
Maneesha Inamdar ◽  
Michihiro Hidaka ◽  
...  

Abstract We have developed a large-scale, expression-based gene trap strategy to perform genome-wide functional analysis of the murine hematopoietic and vascular systems. Using two different gene trap vectors, we have isolated embryonic stem (ES) cell clones containing lacZreporter gene insertions in genes expressed in blood island and vascular cells, muscle, stromal cells, and unknown cell types. Of 79 clones demonstrating specific expression patterns, 49% and 16% were preferentially expressed in blood islands and/or the vasculature, respectively. The majority of ES clones that expressedlacZ in blood islands also expressed lacZ upon differentiation into hematopoietic cells on OP9 stromal layers. Importantly, the in vivo expression of the lacZ fusion products accurately recapitulated the observed in vitro expression patterns. Expression and sequence analysis of representative clones suggest that this approach will be useful for identifying and mutating novel genes expressed in the developing hematopoietic and vascular systems.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4108-4118 ◽  
Author(s):  
Naruyoshi Suwabe ◽  
Satoru Takahashi ◽  
Toru Nakano ◽  
Masayuki Yamamoto

Abstract Although the importance of GATA-1 in both primitive and definitive hematopoietic lineages has been shown in vivo, the precise roles played by GATA-1 during definitive hematopoiesis have not yet been clarified. In vitro differentiation of embryonic stem (ES) cells using OP9 stroma cells can generate primitive and definitive hematopoietic cells separately, and we have introduced a method that separates hematopoietic progenitors and differentiated cells produced in this system. Closer examination showed that the expression of erythroid transcription factors in this system is regulated in a differentiation stage-specific manner. Therefore, we examined differentiation of GATA-1 promoter-disrupted (GATA-1.05) ES cells using this system. Because the GATA-1.05 mice die by 12.5 embryonic days due to the lack of primitive hematopoiesis, the in vitro analysis is an important approach to elucidate the roles of GATA-1 in definitive hematopoiesis. Consistent with the in vivo observation, differentiation of GATA-1.05 mutant ES cells along both primitive and definitive lineages was arrested in this ES cell culture system. Although the maturation-arrested primitive lineage cells did not express detectable amounts of ɛy-globin mRNA, the blastlike cells accumulated in the definitive stage showed β-globin mRNA expression at approximately 70% of the wild type. Importantly, the TER119 antigen was expressed and porphyrin was accumulated in the definitive cells, although the levels of both were reduced to approximately 10%, indicating that maturation of definitive erythroid cells is arrested by the lack of GATA-1 with different timing from that of the primitive erythroid cells. We also found that the hematopoietic progenitor fraction of GATA-1.05 cells contains more colony-forming activity, termed CFU-OP9. These results suggest that theGATA-1.05 mutation resulted in proliferation of proerythroblasts in the definitive lineage.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3448-3448
Author(s):  
Richard C. Koya ◽  
Nori Kasahara ◽  
Takahiro Kimura ◽  
Antoni Ribas ◽  
Renata Stripecke

Abstract Conventional, ex vivo culture of monocytes with recombinant proteins for their differentiation into DCs involves considerable manipulation under “Good Manufacturing Practices” conditions, and is not only more labor intensive but importantly, after ex vivo produced DCs are administered, they lack the stimulatory signals to keep them alive and functional and therefore are short lived. Because of these problems, we have evaluated an one-hit lentiviral transduction approach for genetically modifying monocytes in order to promote autocrine and paracrine production of factors required for their differentiation into immature DCs. High-titer third generation self-inactivating lentiviral vectors expressing granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) efficiently achieved simultaneous and persistent co-delivery of the transgenes into purified human CD14+ monocytes. Co-expression of GM-CSF and IL-4 in monocytes was sufficient to induce their differentiation into lentivirus-modified DCs (“DC/LVs”), as evidenced by their morphology, immunophenotype and immune-function*. Mixed lymphocyte reactions showed that the T-cell stimulating activity of DC/LVs was superior to that of DCs grown by conventional methods. DC/LVs displayed efficient antigen-specific, MHC Class-I restricted stimulation of autologous CD8+ T-cells, as shown by IFN-G production and CTL assays. Importantly, DC/LVs could be maintained metabolically active and viable in culture for 2–3 weeks in the absence of exogenously added growth factors, unlike conventional DCs *. We are now evaluating whether DC/LVs can be re-infused immediately after gene transfer to achieve stable and long-lasting differentiation in vivo. Additionally, the genetic engineering of monocytes is anticipated to generate DCs after one hit of lentiviral transduction, instead of the three consecutive steps for development of DCs (differentiation, maturation, gene delivery of tumor antigens). We have thus established a mouse model for testing DC/LVs in vivo for the treatment of melanoma. Bone marrow cells from C57BL/6 mice transduced with lentiviral vectors expressing GM-CSF and IL-4 recapitulated the same DC/LV morphology and immunophenotype obtained in the human system. Mouse DC/LVs were also more viable in vitro and outperformed conventional mouse DCs in pilot immunization assays as followed by CTL assays and IFN-G ELISPOT. We are currently evaluating the immunotherapeutic efficacy of DC/LVs injected into mice developing B16 melanoma tumors. Co-delivery of a gene for DC maturation (CD40L) and of gene encoding a tumor-associated antigens (MART-1) is being performed. Our goal is to evaluate the implications of simultaneous co-expression of GM-CSF/ IL-4/ CD40L/ MART-1 in DC/LV differentiation and migration to lymph nodes in vivo, immunopotency and safety. Once these pre-clinical considerations are addressed, we foresee a broad clinical application of genetically engineered DCs for vaccination purposes against cancer and chronic infectious diseases.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 495-495
Author(s):  
Ryo Kurita ◽  
Erika Sasaki ◽  
Takashi Hiroyama ◽  
Tomoko Yokoo ◽  
Yukoh Nakazaki ◽  
...  

Abstract Since the successful establishment of human embryonic stem (ES) cell lines in 1998, transplantation of differentiated ES cells to specific organ has been expected to complete its defective function. For the realistic medicine, the preclinical studies using animal model systems including non-human primates are essential. We have already demonstrated that non-human primates of common marmosets (CM) are suitable for the laboratory animal models for preclinical studies of hematopoietic stem cell therapy. In this study, we investigated the in vitro and in vivo differentiation of CM ES cells to hematopoietic cells by exogenous gene transfer methods in order to study the feasibility of future gene modified ES cell therapy. First, we tried various in vitro culture conditions including systems using embryoid bodies or co-culturing with stromal cells to induce hematopoietic cells, but the frequency of inducing hematopoietic cells was very low. The expression of CD45 and gata1 could not be detected in both conditions, suggesting that our culture conditions were incomplete for induction of hematopoietic cells from CM ES cells. Next we examined gene transduction methods by using VSV-G pseudotyped human immunodeficiency virus (HIV) vectors. We constructed the HIV vectors containing hematopoietic genes such as tal1/scl, gata1, gata2, hoxB4 and Lh2 genes under the EF1a promoter and transduced them into CM ES cells. Only in the case of tal1/scl overexpression, not other genes, hematopoietic induction from CM ES cells was dramatically increased and multi-lineage blood cells consisting of erythroid cells, granulocytes, macrophages and megakaryocytes, were confirmed by immunochemical and morphological analyses. Furthermore, RT-PCR results showed that several hematopoietic marker genes including CD34 were expressed higher in the tal1/scl overexpressed ES-derived cells. After the xenotransplantation of ES-derived cells into the immunodeficient mice, CM CD45+ cells and immature erythroids and megakaryocytic cells were observed only in the ES-tal1-injected mice, indicating that enforced expression of tal1/scl into ES cells led to highly efficient hematopoietic cell differentiation in vivo. Taken together, it was suggested that the transduction of exogenous tal1/scl cDNA into ES cells by HIV vector was the promising method for the efficient differentiation from CM ES cells to hematopoietic stem cells. Further examinations are required to determine the long-term hematopoietic reconstitute capacity and the safety of the tal1/scl transduced ES cells in marmoset for the purpose of developing new hematopoietic stem cell therapy.


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4622-4631 ◽  
Author(s):  
William L. Stanford ◽  
Georgina Caruana ◽  
Katherine A. Vallis ◽  
Maneesha Inamdar ◽  
Michihiro Hidaka ◽  
...  

We have developed a large-scale, expression-based gene trap strategy to perform genome-wide functional analysis of the murine hematopoietic and vascular systems. Using two different gene trap vectors, we have isolated embryonic stem (ES) cell clones containing lacZreporter gene insertions in genes expressed in blood island and vascular cells, muscle, stromal cells, and unknown cell types. Of 79 clones demonstrating specific expression patterns, 49% and 16% were preferentially expressed in blood islands and/or the vasculature, respectively. The majority of ES clones that expressedlacZ in blood islands also expressed lacZ upon differentiation into hematopoietic cells on OP9 stromal layers. Importantly, the in vivo expression of the lacZ fusion products accurately recapitulated the observed in vitro expression patterns. Expression and sequence analysis of representative clones suggest that this approach will be useful for identifying and mutating novel genes expressed in the developing hematopoietic and vascular systems.


Author(s):  
Su-Chun Zhang ◽  
Xue-Jun Li ◽  
M Austin Johnson ◽  
Matthew T Pankratz

Cell therapy has been perceived as the main or ultimate goal of human embryonic stem (ES) cell research. Where are we now and how are we going to get there? There has been rapid success in devising in vitro protocols for differentiating human ES cells to neuroepithelial cells. Progress has also been made to guide these neural precursors further to more specialized neural cells such as spinal motor neurons and dopamine-producing neurons. However, some of the in vitro produced neuronal types such as dopamine neurons do not possess all the phenotypes of their in vivo counterparts, which may contribute to the limited success of these cells in repairing injured or diseased brain and spinal cord in animal models. Hence, efficient generation of neural subtypes with correct phenotypes remains a challenge, although major hurdles still lie ahead in applying the human ES cell-derived neural cells clinically. We propose that careful studies on neural differentiation from human ES cells may provide more immediate answers to clinically relevant problems, such as drug discovery, mechanisms of disease and stimulation of endogenous stem cells.


2008 ◽  
Vol 34 (3) ◽  
pp. 225-238 ◽  
Author(s):  
David J. Adams ◽  
Louise van der Weyden

The mouse is a premiere experimental organism that has contributed significantly to our understanding of vertebrate biology. Manipulation of the mouse genome via embryonic stem (ES) cell technology makes it possible to engineer an almost limitless repertoire of mutations to model human disease and assess gene function. In this review we outline recent advances in mouse experimental genetics and provide a “how-to” guide for those people wishing to access this technology. We also discuss new technologies, such as transposon-mediated mutagenesis, and resources of targeting vectors and ES cells, which are likely to dramatically accelerate the pace with which we can assess gene function in vivo, and the progress of forward and reverse genetic screens in mice.


Sign in / Sign up

Export Citation Format

Share Document