Generation of Dendritic Cells after One-Hit Lentiviral Transduction of Hematopoietic Precursor Cells: Proof of Concept for the Human and Mouse Systems.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3448-3448
Author(s):  
Richard C. Koya ◽  
Nori Kasahara ◽  
Takahiro Kimura ◽  
Antoni Ribas ◽  
Renata Stripecke

Abstract Conventional, ex vivo culture of monocytes with recombinant proteins for their differentiation into DCs involves considerable manipulation under “Good Manufacturing Practices” conditions, and is not only more labor intensive but importantly, after ex vivo produced DCs are administered, they lack the stimulatory signals to keep them alive and functional and therefore are short lived. Because of these problems, we have evaluated an one-hit lentiviral transduction approach for genetically modifying monocytes in order to promote autocrine and paracrine production of factors required for their differentiation into immature DCs. High-titer third generation self-inactivating lentiviral vectors expressing granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) efficiently achieved simultaneous and persistent co-delivery of the transgenes into purified human CD14+ monocytes. Co-expression of GM-CSF and IL-4 in monocytes was sufficient to induce their differentiation into lentivirus-modified DCs (“DC/LVs”), as evidenced by their morphology, immunophenotype and immune-function*. Mixed lymphocyte reactions showed that the T-cell stimulating activity of DC/LVs was superior to that of DCs grown by conventional methods. DC/LVs displayed efficient antigen-specific, MHC Class-I restricted stimulation of autologous CD8+ T-cells, as shown by IFN-G production and CTL assays. Importantly, DC/LVs could be maintained metabolically active and viable in culture for 2–3 weeks in the absence of exogenously added growth factors, unlike conventional DCs *. We are now evaluating whether DC/LVs can be re-infused immediately after gene transfer to achieve stable and long-lasting differentiation in vivo. Additionally, the genetic engineering of monocytes is anticipated to generate DCs after one hit of lentiviral transduction, instead of the three consecutive steps for development of DCs (differentiation, maturation, gene delivery of tumor antigens). We have thus established a mouse model for testing DC/LVs in vivo for the treatment of melanoma. Bone marrow cells from C57BL/6 mice transduced with lentiviral vectors expressing GM-CSF and IL-4 recapitulated the same DC/LV morphology and immunophenotype obtained in the human system. Mouse DC/LVs were also more viable in vitro and outperformed conventional mouse DCs in pilot immunization assays as followed by CTL assays and IFN-G ELISPOT. We are currently evaluating the immunotherapeutic efficacy of DC/LVs injected into mice developing B16 melanoma tumors. Co-delivery of a gene for DC maturation (CD40L) and of gene encoding a tumor-associated antigens (MART-1) is being performed. Our goal is to evaluate the implications of simultaneous co-expression of GM-CSF/ IL-4/ CD40L/ MART-1 in DC/LV differentiation and migration to lymph nodes in vivo, immunopotency and safety. Once these pre-clinical considerations are addressed, we foresee a broad clinical application of genetically engineered DCs for vaccination purposes against cancer and chronic infectious diseases.

Blood ◽  
2003 ◽  
Vol 101 (9) ◽  
pp. 3501-3508 ◽  
Author(s):  
Satoru Senju ◽  
Shinya Hirata ◽  
Hidetake Matsuyoshi ◽  
Masako Masuda ◽  
Yasushi Uemura ◽  
...  

We developed a method to generate dendritic cells (DCs) from mouse embryonic stem (ES) cells. We cultured ES cells for 10 days on feeder cell layers of OP9, in the presence of granulocyte-macrophage colony-stimulating factor in the latter 5 days. The resultant ES cell–derived cells were transferred to bacteriologic Petri dishes without feeder cells and further cultured. In about 7 days, irregularly shaped floating cells with protrusions appeared and these expressed major histocompatibility complex class II, CD11c, CD80, and CD86, with the capacity to stimulate primary mixed lymphocyte reaction (MLR) and to process and present protein antigen to T cells. We designated them ES-DCs (ES cell–derived dendritic cells), and the functions of ES-DCs were comparable with those of DCs generated from bone marrow cells. Upon transfer to new dishes and stimulation with interleukin-4 plus tumor necrosis factor α, combined with anti-CD40 monoclonal antibody or lipopolysaccharide, ES-DCs completely became mature DCs, characterized by a typical morphology and higher capacity to stimulate MLR. Using an expression vector containing the internal ribosomal entry site–puromycinN-acetyltransferase gene or a Cre-lox–mediated exchangeable gene-trap system, we could efficiently generate ES cell transfectants expressing the products of introduced genes after their differentiation to DCs. ES-DCs expressing invariant chain fused to a pigeon cytochrome C epitope presented the epitope efficiently in the context of Ek. We primed ovalbumin (OVA)–specific cytotoxic T lymphocytes in vivo by injecting mice with ES-DCs expressing OVA, thus demonstrating immunization with ES-DCs genetically engineered to express antigenic protein. The methods may be applicable to immunomodulation therapy and gene-trap investigations of DCs.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 1981-1987 ◽  
Author(s):  
MR Schaafsma ◽  
JH Falkenburg ◽  
JE Landegent ◽  
N Duinkerken ◽  
S Osanto ◽  
...  

Abstract Recombinant human interleukin-2 (IL-2), administered to cancer patients by continuous intravenous (IV) infusion (3 x 10(6) U/m2/d), was found to induce the in vivo production of colony-stimulating factors (CSF). Plasma obtained from patients during IL-2 treatment stimulated in vitro colony formation of normal human bone marrow cells, depleted of mononuclear phagocytes and T lymphocytes. This colony-stimulating activity (CSA) was identified as IL-5, granulocyte-macrophage CSF (GM- CSF), and macrophage CSF (M-CSF), by the ability of specific antibodies against these factors to neutralize their effects. The presence of IL-2- induced GM-CSF and M-CSF was also demonstrated by specific radioimmunoassays. During IL-2 treatment, plasma also contained detectable levels of IL-6, which was measured in a bioassay. Using a cDNA-polymerase chain reaction (PCR) with specific primer sets for the various CSF, we showed that IL-2 treatment induced the expression of mRNA for M-CSF, GM-CSF, IL-3, and IL-5, but not for granulocyte CSF (G- CSF) in peripheral blood mononuclear cells, suggesting differential expression of CSF in vivo in response to IL-2. Furthermore, no negative regulators of hematopoiesis, such as interferon gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF-alpha), were found in plasma. These data illustrate that in vivo administration of high-dose IL-2 may result in a stimulatory effect on hematopoiesis. The induction of detectable levels of IL-5 and GM-CSF in the circulation may explain the eosinophilia and neutrophilia observed in these patients.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1748-1755 ◽  
Author(s):  
David Bryder ◽  
Sten E. W. Jacobsen

Abstract Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin−Sca-1+kit+ bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3170
Author(s):  
Alexander Ney ◽  
Gabriele Canciani ◽  
J. Justin Hsuan ◽  
Stephen P. Pereira

Pancreatic neuroendocrine tumours (pNETs) are a heterogeneous group of epithelial tumours with neuroendocrine differentiation. Although rare (incidence of <1 in 100,000), they are the second most common group of pancreatic neoplasms after pancreatic ductal adenocarcinoma (PDAC). pNET incidence is however on the rise and patient outcomes, although variable, have been linked with 5-year survival rates as low as 40%. Improvement of diagnostic and treatment modalities strongly relies on disease models that reconstruct the disease ex vivo. A key constraint in pNET research, however, is the absence of human pNET models that accurately capture the original tumour phenotype. In attempts to more closely mimic the disease in its native environment, three-dimensional culture models as well as in vivo models, such as genetically engineered mouse models (GEMMs), have been developed. Despite adding significant contributions to our understanding of more complex biological processes associated with the development and progression of pNETs, factors such as ethical considerations and low rates of clinical translatability limit their use. Furthermore, a role for the site-specific extracellular matrix (ECM) in disease development and progression has become clear. Advances in tissue engineering have enabled the use of tissue constructs that are designed to establish disease ex vivo within a close to native ECM that can recapitulate tumour-associated tissue remodelling. Yet, such advanced models for studying pNETs remain underdeveloped. This review summarises the most clinically relevant disease models of pNETs currently used, as well as future directions for improved modelling of the disease.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 5143-5143
Author(s):  
Liesbeth De Waele ◽  
Kathleen Freson ◽  
Chantal Thys ◽  
Christel Van Geet ◽  
Désiré Collen ◽  
...  

Abstract The prevalence of congenital platelet disorders has not been established but for some life-threatening bleeding disorders the current therapies are not adequate, justifying the development of alternative strategies as gene therapy. In the case of platelet dysfunction and thrombocytopenia as described for GATA1 deficiency, potentially lethal internal bleedings can occur. The objective of the study is to develop improved lentiviral vectors for megakaryocyte(MK)-specific long term gene expression by ex vivo transduction of hematopoietic stem cells (HSC) to ultimately use for congenital thrombopathies as GATA1 deficiency. Self-inactivating lentiviral vectors were constructed expressing GFP driven by the murine (m) or human (h) GPIIb promoter. These promoters contain multiple Ets and GATA binding sites directing MK-specificity. To evaluate the cell lineage-specificity and transgene expression potential of the vectors, murine Sca1+ and human CD34+ HSC were transduced in vitro with Lenti-hGPIIb-GFP and Lenti-mGPIIb-GFP vectors. After transduction the HSC were induced to differentiate in vitro along the MK and non-MK lineages. The mGPIIb and hGPIIb promoters drove GFP expression at overall higher levels (20% in murine cells and 25% in human cells) than the ubiquitous CMV (cytomegalovirus) or PGK (phosphoglycerate kinase) promoters, and this exclusively in the MK lineage. Interestingly, in both human and murine HSC the hGPIIb promoter with an extra RUNX and GATA binding site, was more potent in the MK lineage compared to the mGPIIb promoter. Since FLI1 and GATA1 are the main transcription factors regulating GPIIb expression, we tested the Lenti-hGPIIb-GFP construct in GATA1 deficient HSC and obtained comparable transduction efficiencies as for wild-type HSC. To assess the MK-specificity of the lentiviral vectors in vivo, we transplanted irradiated wild-type C57Bl/6 mice with Sca1+ HSC transduced with the Lenti-hGPIIb-GFP constructs. Six months after transplantation we could detect 6% GFP positive platelets without a GFP signal in other cell lineages. Conclusion: In vitro and in vivo MK-specific transgene expression driven by the hGPIIb and mGPIIb promoters could be obtained after ex vivo genetic engineering of HSC by improved lentiviral vectors. Studies are ongoing to study whether this approach can induce phenotypic correction of GATA1 deficient mice by transplantation of ex vivo Lenti-hGPIIb-GATA1 transduced HSC.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2180-2180
Author(s):  
Sari Jalkanen ◽  
Satu Mustjoki ◽  
Kimmo Porkka ◽  
Jukka Vakkila

Abstract Abstract 2180 Poster Board II-157 Introduction. Aberrant phosphorylation of the BCR-ABL1 tyrosine kinase (TK) is characteristic of chronic myeloid leukemia (CML). This oncoprotein interacts directly with intracellular signaling proteins, alters the responsiveness of cytokine receptors and regulates secretion of autocrine cytokines. Targeted inhibition of BCR-ABL1 with TK inhibitor (TKI) imatinib mesylate (IM) is the current standard treatment of CML. For overcoming IM resistance or intolerance, 2nd generation TKIs (nilotinib, dasatinib) with broader kinase inhibition profile have been approved for clinical use. Although in vitro results suggest that TKIs are immunosuppressive, no increases in opportunistic infections or secondary malignancies have been observed to date. In contrast, in some TKI-treated patients immunoactivation in the form of chronic lymphocytosis linked to excellent therapy responses has recently been shown. Dynamic monitoring of aberrant cytokine signaling pathways would aid in understanding and predicting the development of TKI-resistance or adverse/off-target effects. The aim of this study was to analyze the responsiveness of leukocytes to cytokine stimuli in CML patients at diagnosis and during TKI therapy using single-cell profiling of phosphoprotein networks by multiparameter flow cytometry. Patients and methods. The study consisted of 4 healthy controls, 6 CML patients at diagnosis, 6 IM patients and 5 dasatinib patients. Stimuli included GM-CSF, IL-2+IL-10+IFNα and IL-4+IL-6+IFNγ and they were added immeadately to freshly drawn whole blood ex vivo. The readout phosphoproteins were pERK1/2, pSTAT1, pSTAT3, pSTAT5a and pSTAT6 (with isotype controls), and were analyzed separately from granulocytes, monocytes, CD4+ CD25neg T helper cells (Th), CD4neg lymphocytes and CD4+CD25+ T cells including regulatory T-cells (Treg). Analysis was performed with heatmap function of Cytobank software (http://cytobank.stanford.edu/public/). Results. Unstimulated phosphoprotein levels reflecting the activation state of leukocytes in vivo did not differ between healthy controls and CML patients at diagnosis or during dasatinib therapy. Strikingly, in IM patients, baseline levels of pSTAT3 were relatively high indicating in vivo occurring activation of leukocytes in this patient group. We next studied ex vivo responsiveness of immune effector cells with cytokines and found clear differences between healthy controls and CML patients. At CML diagnosis. GM-CSF/pERK1+pSTAT5a, IFNa/pSTAT1,and IL-4/pSTAT6 (stimulus/readout) as well as pSTAT3 responses with all stimuli were suppressed in monocytes. In granulocytes, GM-CSF/pSTAT1 levels were diminished. In Th and Treg lymphocytes, IL-6/pSTAT3 responses were markedly pronounced, while IL-10/pSTAT3 responses were not affected when compared to healthy controls. Such difference was not observed in CD4neg lymphocytes. During TKI therapy. Most patients (9/11) were in cytogenetic remission at the time of analysis. The unresponsiveness of myeloid cells at diagnosis was restored by IM or dasatinib therapy in most, but not all patients. Similarly, in Th and Treg lymphocytes TKI-therapy normalized the enhanced IL-6/pSTAT3 responses that were evident at diagnosis. However, in Th and Treg cells pSTAT3 responses provoked by IL-10 were particularly prominent. Interestingly, one dasatinib patient with aberrant constant blood NK-lymphocytosis and monocytosis had uniquely strong IFNg/pSTAT1 and IL-4/pSTAT6 responses in monocytes. Furthermore, one patient who have stayed in persistent remission after IM discontinuation had exceptionally high pSTAT3 responses with all of stimuli used. Similar kind of signaling profile was unseen with the other patients and could reflect immunoactivation related to leukemia control. Conclusions. Dynamic single-cell profiling of signaling networks is feasible in CML patients and can be used to study mechanisms of aberrant immune reactivity in TKI-treated patients. The method could be particularly suitable for assessing candidate patients for TKI discontinuation. Although in vitro results suggest immunosuppressive effects of TKIs on lymphocytes, leukocytes ex vivo from patients were able to respond similarly to cytokine stimuli as in healthy controls. Disclosures: Mustjoki: BMS: Honoraria. Porkka:BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1460-1460
Author(s):  
Laura A Paganessi ◽  
Lydia Luy Tan ◽  
Sucheta Jagan ◽  
Robin Frank ◽  
Antonio M. Jimenez ◽  
...  

Abstract Abstract 1460 Many patients with hematologic malignancies choose hematopoietic stem cell transplantation (HSCT) as a treatment option. The most common source of Hematopoietic Stem and Progenitor Cells (HSC/HPC) for adult recipients is mobilized Peripheral Blood (mobPB). Limited quantities of HSC/HPC obtainable from an umbilical cord restricts its use for adult recipients. Ex vivo treatment of umbilical cord blood (CB) with cytokines and growth factors is being used to expand the population of cord blood HSC/HPCs in hopes of obtaining higher numbers of transplantable CB cells. In addition, cytokines and growth factors are often utilized post-transplant in an attempt to improve the rate of immune reconstitution. It has been previously reported that granulocyte-colony-stimulating factor (G-CSF), and granulocyte-macrophage-colony-stimulating factor (GM-CSF) up-regulate CD26 (dipeptidyl peptidase IV/DPPIV) activity on freshly isolated CD34+ CB cells within 18 hours of culture [Christopherson, et al. Exp Hematol 2006]. Separate studies have demonstrated that treatment of uncultured CD34+ CB cells with the CD26 inhibitor Diprotin A increases transplant efficiency into immunodeficient mice [Christopherson, et al. Stem Cells Dev. 2007]. We evaluated here the in vitro and in vivo effects of CD26 inhibitor treatment on previously frozen CB CD34+ cells cultured ex vivo with G-CSF, GM-CSF or SCF for 48 hours. We examined CD26 expression by multivariate flow cytometry, CD26 activity using the established chromogenic CD26 substrate, Gly-Pro-p-nitroanilide (Gly-Pro-pNA), and SDF-1α induced migration and adhesion. In vivo, we examined long-term engraftment in NSG (NOD/SCID/IL2Rγnull) immunodeficient mice. After 48 hours of culture with cytokine treatment we observed altered CD26 expression on CD34+ CB cells. There was both an increase in the percentage of CD26+ cells and the mean fluorescence intensity (MFI) of CD26. Additionally, CD26 activity was 1.20, 1.59, 1.58, and 1.65 fold greater after ex vivo culture in untreated, G-CSF, GM-CSF and SCF treated CB CD34+ cells respectively compared to the CD26 activity prior to culture. The increase in CD26 activity as a result of treatment with G-CSF (p≤ 0.01), GM-CSF (p≤ 0.05) or SCF (p≤ 0.01) was significantly higher than the CD26 activity measured in the untreated cells following 48 hours of culture. Post-culture treatment with the CD26 inhibitor, Diprotin A, significantly improved SDF-1α induced migration and adhesion of cultured CD34+ CB cells in vitro, particularly in G-CSF treated cells (p≤ 0.05). Diprotin A treatment of CD34+ CB cells previously treated with G-CSF also significantly increased the long-term in vivo engraftment of stem and progenitor (CD34+CD38-, p=0.032), monocyte (CD14+, p=0.015), and megakaryocyte/platelet (CD61+, p=0.020) cells in the bone marrow of NSG mice. CD26 has been previously shown to cleave SDF-1 (stromal cell-derived factor 1/CXCL12). After cleavage, SDF-1 retains its ability to bind to its receptor (CXCR4) but no longer signals. SDF-1 is a powerful chemoattractant and has been shown to be important in mobilization, homing, and engraftment of HSCs and HPCs. This study demonstrates the influence of ex vivo culture and the effect of cytokine treatment on CD26 activity and subsequent biologic function related to HSCT. All three cytokines studied caused a significant increase in enzymatic activity at 48 hours compared to untreated cells. The up-regulation of CD26 protein expression caused by cytokine treatment for 48 hours, in particular G-CSF, had a significant impact on SDF-1 stimulated migration and adhesion. This was demonstrated in vitro by the improvement in cell function after CD26 inhibitor treatment and in vivo by the improved engraftment seen in the G-CSF treated cells with CD26 inhibitor treatment. These experiments suggest that combining CD26 inhibitor treatment following culture with G-CSF treatment during culture has the greatest overall benefit in engraftment outcome. By increasing our understanding of the effects of exogenous cytokines during culture on trafficking, ex vivo expanded CB has the potential to become a more effective means of not only increasing numbers of CB HSC/HPCs but also engraftment outcomes. This would ultimately allow expanded cord blood to become a more viable option for HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3931-3931
Author(s):  
John Welch ◽  
Haixa Niu ◽  
Geoffrey L. Uy ◽  
Peter Westervelt ◽  
Camille N. Abboud ◽  
...  

Abstract We sought to determine whether bexarotene can be combined with decitabine in elderly and relapsed AML patients. Both drugs have been shown to be well tolerated in acute myeloid leukemia (AML) patients as single agents, and these agents have non-overlapping mechanisms and side-effect profiles; bexarotene activates transcriptional effects of RXRA through hetero- and homodimers, while decitabine is thought to act through DNA hypomethylation. Furthermore, through Affymetrix expression array profiling of 111 AML patients and Nanostring analysis of 7 MDS and AML patients, we observed consistently elevated levels of RXRA relative to RARA, suggesting that a ligand specific for RXR may be more effective to induce AML differentiation than the RARA ligand ATRA. We treated 18 elderly (≥ 60 years old) or relapsed AML patients in 3+3 dose escalating bexarotene cohorts: 100 mg/m2/day, 200 mg/m2/day, 300 mg/m2/day. All patients were treated with decitabine 20 mg/m2IV on days 1-5 of 28 day cycles. All patients were monitored for hypertriglyceridemia and hypothyroidism, and treated accordingly. The average age was 73, the average performance status was 1, an adverse karyotype was observed in 9 patients, and 12 patients had relapsed after prior therapy. Only one patient experienced a dose limiting toxicity (grade 3 fatigue) and 8 patients were treated with the maximum dose (myelosuppression, infection, differentiation syndrome, hypertriglyceridemia, hyperlipidemia, hypothyroidism, nausea, weight loss and reversible electrolyte abnormalities were not considered dose limiting). The overall response rate was 22%: 1 patient achieved complete remission with incomplete count recovery (CRi) and 3 patients achieved blast reduction greater than 50% (partial response, PR). In addition, six patients achieved stable disease (SD). Patients with CRi, PR, or SD completed an average of 4.25 cycles, while other patients completed an average of 1.2 cycles. Of note, 3 patients successfully transitioned to allogeneic transplant following therapy (average age 68). We correlated ex vivo bexarotene sensitivity with clinical response. Bone marrow cells were collected on day 0 and day 3 of bexarotene therapy (during cycle 1, decitabine was administered on day 3 after bone marrow collection) and co-cultured with irradiated MS5 murine stromal cells for 72hrs with or without further bexarotene treatment. We used flow cytometry to compare CD11b expression in cells treated with and without bexarotene ex vivo, and compared expression between samples collected on day 0 vs day 3 (in vivo treatment). Bexarotene increased CD11b expression greater in the 4 responding patients vs non-responders (fold increase in CD11b: ex vivo average 2.1 ± 0.3 vs 1.1 ± 0.1 fold, p < 0.003; and in vivo 1.6 ± 0.3 vs 0.7 ± 0.2 fold, p < 0.03; increase in absolute percentage of CD11b+ cells: ex vivo average 24% ± 2.6% vs 0.7% ± 1%, p < 0.001; and in vivo 13.6% ± 4% vs -3.6% ± 2.2%, p < 0.002). Furthermore, all 4 responding patients demonstrated an equivalent or increased induction of CD11b when treated ex vivo with ATRA compared with bexarotene. These results show that bexarotene, a retinoid which selectively binds to and activates RXRs, but not RARs, can be safely combined with decitabine in relapsed and refractory AML patients. This combination leads to partial response in a subset of patients, is well tolerated, and can bridge elderly patients to allogeneic transplant. Because ex vivo bexarotene treatment identified all patients achieving a PR, further studies should focus on patients who display ex vivo sensitivity. Finally, the mechanism of RXRA-activated differentiation is likely to be through the RXRA/RARA heterodimer, as all 4 patients who responded to bexarotene also responded to ATRA when tested ex vivo. Disclosures: Welch: Eisai: Research Funding. Off Label Use: Bexarotene for the treatment of AML. Abboud:Ariad, Alexion, Novartis, Teva: Honoraria, Speakers Bureau. Stockerl-Goldstein:Celgene : Speakers Bureau; Millennium: Speakers Bureau.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1748-1755 ◽  
Author(s):  
David Bryder ◽  
Sten E. W. Jacobsen

Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin−Sca-1+kit+ bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Wei-Ting Chang ◽  
Hui-Ming Chen ◽  
Shu-Yi Yin ◽  
Yung-Hsiang Chen ◽  
Chih-Chun Wen ◽  
...  

Dioscoreatuber phytoextracts can confer immunomodulatory activitiesex vivoand improve regeneration of bone marrow cellsin vivo. In present study, we evaluated specificDioscoreaphytoextracts for useex vivoas a bone-marrow-derived dendritic cell- (DC-) based vaccine adjuvant for cancer immunotherapy. FractionatedDioscoreaextracts (DsII) were assayed for their effect on maturation and functions of DCex vivoand antimelanoma activity of DC-based vaccinein vivo. The phytoextract from 50–75% ethanol-precipitated fraction ofDioscorea alatavar.purpureaTainung no. 5 tuber, designated as DsII-TN5, showed a strong augmentation of tumor cell lysate- (TCL-) loaded DC-mediated activation of T-cell proliferation. DsII-TN5 stimulated the expression of CD40, CD80, CD86, and IL-1βin TCL-loaded DCs and downregulated the expression of TGF-β1. DC vaccines prepared by a specific schema (TCL (2 h) + LPS (22 h)) showed the strongest antitumor activity. DsII-TN5 as a DC vaccine adjuvant showed strong antimelanoma activity and reduced myeloid-derived suppressor cell (MDSC) population in tested mice. DsII-TN5 can also activate DCs to enhance Th1- and Th17-related cytokine expressions. Biochemical analysis showed that DsII-TN5 consists mainly of polysaccharides containing a high level (53%) of mannose residues. We suggest that DsII-TN5 may have potential for future application as a potent, cost-effective adjuvant for DC-based cancer vaccines.


Sign in / Sign up

Export Citation Format

Share Document