scholarly journals Evidence for a role for Gαi1 in mediating weak agonist-induced platelet aggregation in human platelets: reduced Gαi1 expression and defective Gi signaling in the platelets of a patient with a chronic bleeding disorder

Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 4828-4835 ◽  
Author(s):  
Yatin M. Patel ◽  
Kirti Patel ◽  
Salman Rahman ◽  
Mark P. Smith ◽  
Gillian Spooner ◽  
...  

AbstractWe have examined platelet functional responses and characterized a novel signaling defect in the platelets of a patient suffering from a chronic bleeding disorder. Platelet aggregation responses stimulated by weak agonists such as adenosine diphosphate (ADP) and adrenaline were severely impaired. In comparison, both aggregation and dense granule secretion were normal following activation with high doses of collagen, thrombin, or phorbol-12 myristate-13 acetate (PMA). ADP, thrombin, or thromboxane A2 (TxA2) signaling through their respective Gq-coupled receptors was normal as assessed by measuring either mobilization of intracellular calcium, diacylglycerol (DAG) generation, or pleckstrin phosphorylation. In comparison, Gi-mediated signaling induced by either thrombin, ADP, or adrenaline, examined by suppression of forskolin-stimulated rise in cyclic AMP (cAMP) was impaired, indicating dysfunctional Gαi signaling. Immunoblot analysis of platelet membranes with specific antiserum against different Gα subunits indicated normal levels of Gαi2,Gαi3,Gαz, and Gαq in patient platelets. However, the Gαi1level was reduced to 25% of that found in normal platelets. Analysis of platelet cDNA and gDNA revealed no abnormality in either the Gαi1 or Gαi2 gene sequences. Our studies implicate the minor expressed Gαi subtype Gαi1 as having an important role in regulating signaling pathways associated with the activation of αIIbβ3 and subsequent platelet aggregation by weak agonists.

2011 ◽  
Vol 436 (2) ◽  
pp. 469-480 ◽  
Author(s):  
Knut Fälker ◽  
Linda Haglund ◽  
Peter Gunnarsson ◽  
Martina Nylander ◽  
Tomas L. Lindahl ◽  
...  

PARs (protease-activated receptors) 1 and 4 belong to the family of G-protein-coupled receptors which induce both Gα12/13 and Gαq signalling. By applying the specific PAR1- and PAR4-activating hexapeptides, SFLLRN and AYPGKF respectively, we found that aggregation of isolated human platelets mediated via PAR1, but not via PAR4, is abolished upon homologous receptor activation in a concentration- and time-dependent fashion. This effect was not due to receptor internalization, but to a decrease in Ca2+ mobilization, PKC (protein kinase C) signalling and α-granule secretion, as well as to a complete lack of dense granule secretion. Interestingly, subthreshold PAR4 activation rapidly abrogated PAR1 signalling desensitization by differentially reconstituting these affected signalling events and functional responses, which was sufficient to re-establish aggregation. The lack of ADP release and P2Y12 receptor-induced Gαi signalling accounted for the loss of the aggregation response, as mimicking Gαi/z signalling with 2-MeS-ADP (2-methylthioadenosine-5′-O-diphosphate) or epinephrine (adrenaline) could substitute for intermediate PAR4 activation. Finally, we found that the re-sensitization of PAR1 signalling-induced aggregation via PAR4 relied on PKC-mediated release of both ADP from dense granules and fibrinogen from α-granules. The present study elucidates further differences in human platelet PAR signalling regulation and provides evidence for a cross-talk in which PAR4 signalling counteracts mechanisms involved in PAR1 signalling down-regulation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2855-2855
Author(s):  
Yamini Saraswathy Bynagari ◽  
Bela Nagy ◽  
Kamala Bhavaraju ◽  
Donna Woulfe ◽  
Soochong Kim ◽  
...  

Abstract Protein Kinase C (PKC) are family of serine threonine kinases, known to regulate various platelet functional responses. Among them novel class of PKC isoforms (nPKC) including delta(δ), theta(𝛉), eta(η), and epsilon(ε) are expressed in platelets. Although, the role of nPKC ε and η in platelets is fairly understood, not much is known about nPKC ε and η in platelets. In this study, we investigated the role of nPKC ε in platelet functional responses using ADP-induced signaling as our stereotype. ADP causes platelet activation via Gq-coupled P2Y1 receptor and Gi-coupled P2Y12 receptor. Thus, we primarily studied the role of P2Y1 receptor in nPKC ε activation. ADP activated nPKC ε in time- and concentration- dependent manner. In the presence of P2Y1 receptor antagonist MRS-2179 and in P2Y1 knockout (KO) murine platelets ADP failed to activate nPKC ε, suggesting that ADP activates nPKC ε via P2Y1 receptor. We further investigated the functional role of nPKC ε using specific nPKC ε inhibitory RACK peptide (ε V1-2). ε V1-2 is a peptide designed to compete with native nPKC ε to bind ε-Receptors for activated C Kinase (ε-RACK) and thereby inhibits nPKC ε catalytic activity due to decreased substrate accessibility. ADP-induced thromboxane generation in human platelets pretreated with ε V1-2 peptide was more compared to the platelets pretreated with control peptide. Similarly, ADP-induced thromboxane generation in platelets derived from nPKC ε KO mouse was more compared to the wild type (WT) littermates. However, ADP- induced alpha granule secretion and aggregation in aspirin treated platelets derived from PKC ε KO mice was not significantly different from platelets derived from wild type littermates. These data suggest that nPKC e regulates an unknown pathway, which primarily regulates thromboxane generation with minimal effects on aggregation and alpha granule secretion. Furthermore, we also investigated the role of nPKC ε in PAR- and GPVI- mediated platelet aggregation and dense granule secretion. Interestingly, in both aspirin-treated and non-aspirin-treated platelets PAR- and GPVI- mediated platelet aggregation and dense granule secretion were potentiated. Consistent with ex vivo studies, FeCl3-induced arterial thrombosis was enhanced in nPKC ε KO mice compared to WT littermates.


1996 ◽  
Vol 316 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Belén RODRÍGUEZ-LIÑARES ◽  
Steve P. WATSON

Thrombopoietin (TPO), also known as the c-mpl ligand, stimulates rapid tyrosine phosphorylation of multiple proteins in human platelets including the Janus family kinases JAK2 and TYK2. On its own, TPO has no effect on platelet aggregation and dense-granule secretion but induces a general potentiation of these responses by other stimuli. The most dramatic effect is observed against threshold concentrations of agonists for aggregation. Shape change or weak reversible aggregation induced by low concentrations of thrombin, collagen and the thromboxane mimetic, U46619, are converted into irrreversible aggregation in the presence of TPO. A similar result is obtained in the presence of the ADP scavenger apyrase and cyclo-oxygenase inhibitor indomethacin. TPO also induces potentiation of dense-granule secretion measured through release of 5-hydroxy[3H]tryptamine. This effect is most striking against low concentrations of stimuli and is independent of aggregation as it is observed in the presence of chelation of extracellular Ca2+ with EGTA. TPO potentiates activation of phospholipase C and elevation of intracellular Ca2+, providing a molecular explanation for potentiation of functional responses. TPO may have an important physiological role in priming platelet activation in thrombocytopenia, an action that may help to compensate for the reduced platelet density.


2021 ◽  
Vol 10 (20) ◽  
pp. 4743
Author(s):  
Preeti Kumari Chaudhary ◽  
Sanggu Kim ◽  
Soochong Kim

Arrestins in concert with GPCR kinases (GRKs) function in G protein-coupled receptor (GPCR) desensitization in various cells. Therefore, we characterized the functional differences of arrestin3 versus arrestin2 in the regulation of GPCR signaling and its desensitization in platelets using mice lacking arrestin3 and arrestin2. In contrast to arrestin2, platelet aggregation and dense granule secretion induced by 2-MeSADP, U46619, thrombin, and AYPGKF were significantly potentiated in arrestin3-deficient platelets compared to wild-type (WT) platelets, while non-GPCR agonist CRP-induced platelet aggregation and secretion were not affected. Surprisingly, in contrast to GRK6, platelet aggregation induced by the co-stimulation of serotonin and epinephrine was significantly potentiated in arrestin3-deficient platelets, suggesting the central role of arrestin3 in general GPCR desensitization in platelets. In addition, the second challenge of ADP and AYPGKF restored platelet aggregation in arrestin3-deficient platelets but failed to do so in WT and arrestin2-deficient platelets, confirming that arrestin3 contributes to GPCR desensitization. Furthermore, ADP- and AYPGKF-induced Akt and ERK phosphorylation were significantly increased in arrestin3-deficient platelets. Finally, we found that arrestin3 is critical for thrombus formation in vivo. In conclusion, arrestin3, not arrestin2, plays a central role in the regulation of platelet functional responses and thrombus formation through general GPCR desensitization in platelets.


1979 ◽  
Vol 42 (04) ◽  
pp. 1193-1206 ◽  
Author(s):  
Barbara Nunn

SummaryThe hypothesis that platelet ADP is responsible for collagen-induced aggregation has been re-examined. It was found that the concentration of ADP obtaining in human PRP at the onset of aggregation was not sufficient to account for that aggregation. Furthermore, the time-course of collagen-induced release in human PRP was the same as that in sheep PRP where ADP does not cause release. These findings are not consistent with claims that ADP alone perpetuates a collagen-initiated release-aggregation-release sequence. The effects of high doses of collagen, which released 4-5 μM ADP, were not inhibited by 500 pM adenosine, a concentration that greatly reduced the effect of 300 μM ADP. Collagen caused aggregation in ADP-refractory PRP and in platelet suspensions unresponsive to 1 mM ADP. Thus human platelets can aggregate in response to collagen under circumstances in which they cannot respond to ADP. Apyrase inhibited aggregation and ATP release in platelet suspensions but not in human PRP. Evidence is presented that the means currently used to examine the role of ADP in aggregation require investigation.


1982 ◽  
Vol 48 (01) ◽  
pp. 078-083 ◽  
Author(s):  
C Ts'ao ◽  
S J Hart ◽  
D V Krajewski ◽  
P G Sorensen

SummaryEarlier, we found that ε-aminocaproic acid (EACA) inhibited human platelet aggregation induced by adenosine diphosphate (ADP) and collagen, but not aggregation by arachidonic acid (AA). Since EACA is structurally similar to lysine, yet these two agents exhibit vast difference in their antifibrinolytic activities, we chose to study the effect of lysine on platelet aggregation. We used L-lysine-HCl in these studies because of its high solubility in aqueous solutions while causing no change in pH when added to human plasma. With lysine, we repeatedly found inhibition of ADP-, collagen- and ristocetin-induced aggregation, but potentiation of AA-induced aggregation. Both the inhibitory and potentiation effects were dose-dependent. Low doses of lysine inhibited the secondary phase of aggregation; high doses of it also inhibited the primary phase of aggregation. Potentiation of AA-induced aggregation was accompanied by increased release of serotonin and formation of malondialdehyde. These effects were not confined to human platelets; rat platelets were similarly affected. Platelets, exposed to lysine and then washed and resuspended in an artificial medium not containing lysine, remained hypersensitive to AA, but no longer showed decreased aggregation by collagen. Comparing the effects of lysine with equimolar concentrations of sucrose, EACA, and α-amino-n-butyric acid, we attribute the potent inhibitory effect of lysine to either the excess positive charge or H+ and C1− ions. The -NH2 group on the α-carbon on lysine appears to be the determining factor for the potentiation effect; the effect seems to be exerted on the cyclooxygenase level of AA metabolism. Lysine and other chemicals with platelet-affecting properties similar to lysine may be used as a tool for the study of the many aspects of a platelet aggregation reaction.


1987 ◽  
Author(s):  
C T Poll ◽  
J Westwick

Fura 2 is one of a recently-introduced family of Ca++ indicators with improved fluorescent properties compared to quin 2 (Grynkiewicz et al 1985). This study has examined the role of [Ca++]i in thrombin-induced dense granule release using prostacyclin-washed human platelets loaded with either thedense granule marker 14C-5HT (5HT) alone or with 5HT together with quin 2 ([quin2]i = 0.8mM) or fura 2 ([fura 2]i 20-30µM). In the presence of ImM extracellular calcium concentration ([Ca++]i) the [Ca++]e in quin 2 and fura 2 loaded platelets was 93±2 (n=10 experiments) and 133±0.3nM (n=12 experiments) respectively. In either quin 2 or fura 2 loaded platelets suspended in the presence of ImM [Ca++]e, thrombin (0.23-23.InM) promoted a rapid (in secs)concentration-dependent elevation of [Ca++]i from basal values to levels l-2µM, together with a parallel release of dense granules almost identical to that obtained with thrombin in non dye loaded platelets. In fura 2 loaded cells, removal of [Ca++]e inhibited the elevation of [Ca++]i induced by a sub-maximal concentration of thrombin (0.77nM) by 43+5% (n=4) but interestingly had no significant effect (p<0.05) on the rise in [Ca++]i elicited by low thrombin doses (0.231nM). Neither did lowering [Ca++]e inhibit the release of 5HT evoked by thrombin ( 0.231-23.InM) from either fura 2 loaded or non dye loaded platelets. In contrast, in quin 2 loaded platelets, removal of [Ca++]e inhibited the thrombin (0.231-23.InM) stimulated rise in [Ca++]i-by 90% and the 5HT release response to either low (0.231nM), sub-maximal (0.77nM) or maximal (23.InM) thrombin by 100% (n=4), 87+2°/o (n=6)and 2+l°/o (n=4) respectively. Fura 2 but not quin 2 loaded cells suspended in ImM [Ca++]e exhibited a Ca++ response to thrombin concentrations >2.31nM which could be separated into a rapid phasic component and a more sustained 'tonic' like component inhibitable by removal of [Ca++]e or by addition of ImM Ni++ . These data suggest the use of fura 2 rather than quin 2 for investigating stimulus response coupling in platelets, particularly when [Ca++]e is less than physiological. We thank the British Heart Foundation and Ciba-Geigy USA for financial support.


1979 ◽  
Vol 182 (2) ◽  
pp. 413-419 ◽  
Author(s):  
Holm Holmsen ◽  
Linda Robkin ◽  
H. James Day

1. Shape change, aggregation and secretion of dense-granule constituents in platelets differ in their dependence on cellular energy metabolism. The possibility that such a difference also exists between secretion of dense-granule constituents and acid hydrolases was investigated. 2. Human platelets were incubated with [14C]adenine in plasma, and then washed and resuspended in salt solutions. The effects of incubating the cells with antimycin A and 2-deoxyglucose on the concentrations of [14C]ATP, ADP, AMP, IMP and inosine plus hypoxanthine and on thrombin-induced secretion of ATP plus ADP and acid hydrolases were studied. The metabolic inhibitors only affected 14C-labelled nucleotides, whereas thrombin only liberated unlabelled ATP and ADP. 3. The extent of secretion decreased progressively with time during incubation with the metabolic inhibitors. At any time the secretion of acid hydrolases, β-N-acetylglucosaminidase, β-glucuronidase and β-galactosidase was inhibited to a greater extent than secretion of ATP plus ADP (dense-granule secretion). 4. Incubation with the metabolic inhibitors shifted the log (dose)–response relationship to higher thrombin concentrations, and with a greater shift for acid hydrolase secretion than for dense-granule secretion. 5. Antimycin, when present alone, caused a marked decrease in the rate of acid hydrolase secretion, but had no effect on dense-granule secretion. 6. These results further support the view that acid hydrolase secretion and dense-granule secretion are separate processes with different requirements for ATP energy. Acid hydrolase secretion, but not dense-granule secretion, appears to depend on a simultaneous rapid generation of ATP, which can be accomplished by oxidative, but not by glycolytic, ATP production.


1981 ◽  
Author(s):  
C M Chesney ◽  
D D Pifer

PGI2,which increases platelet cAMP(Prostaglandins 13: 389,1977),is a potent inhibitor of aggregation and secretion .We stidued the time course of the same return of platelet function after exposure of platelets to PGI2.Sepharose 2B columns were equilibrated with Tyrode’s albumin buffer, pH7.5 (no Ca2+) containing PGI2 (534nM). Platelet rich plasma was applied and eluted with the same buffer. The filtered platelets(GFP) were then subsampled hourly after elution from the column. Fibrinogen was added to finel concentration of 1.7mg/ml. Platelet aggregation(PA) and release of 14C serotonin (5HT),platelet factor 4(PF4), and factor V (FV) were assayed after stimulation of the platelet by collagen(C), ADP,epinephrine(E), arachidonic acid(AA) and ionophore A23187(I). Data representative of 5 separate studies follow.I(20μg/ml) induced PA was 76%(Ohr),52%(1hr) and 61%(2hr and beyond). Release of 5HT, FV,and PF4 were 60%,1.89u,and 7.97 yg/10 pit, respectively, at time 0 and increased progressively, reaching a plateau at 2 hr. AA(500μg/ml) was 10%(0hr),30%(2hr),68%(3hr) and 8%(4hr). Release of 5HT paralleled PA but release of FV and PF4 remained suppressed for 4 hrs. In contrast α-granule (PF4 and FV)release by C(μg/ml)increased as PA increased while dense granule secretion remained suppressed. PA as well as a and dense granule secretion by ADP (10μM) were minimal during 4 hrs. PA and FV secretion by E (55μM) also remain inhibited for 4 hrs. In spite of this normal dense granule release occurred initially and declined progressively over 4 hours.


Sign in / Sign up

Export Citation Format

Share Document