In vivo retroviral gene transfer by direct intrafemoral injection results in correction of the SCID phenotype in Jak3 knock-out animals

Blood ◽  
2003 ◽  
Vol 102 (3) ◽  
pp. 843-848 ◽  
Author(s):  
Christine S. McCauslin ◽  
John Wine ◽  
Linzhao Cheng ◽  
Kim D. Klarmann ◽  
Fabio Candotti ◽  
...  

Abstract Efficient retroviral gene transfer to pluripotential hematopoietic stem cells (PHSCs) requires ex vivo culture in multiple hematopoietic growth factors (HGFs) to promote cell division. While treatment of PHSCs with HGF can render stem cells viable targets for retroviral infection, HGFs can promote differentiation, loss of self-renewal potential, and affect the homing/engraftment capacity of PHSCs. To avoid the negative impacts observed with ex vivo transduction protocols, we developed a murine model for in vivo retroviral infection by direct intrafemoral injection (DII), thus abolishing the need for removal of cells from their native microenvironment and the signals necessary to maintain their unique physiology. Using this approach we have demonstrated in vivo retroviral gene transfer to colony-forming units–c (CFU-c), short-term reconstituting cells, and PHSCs. Moreover, direct intrafemoral injection of Jak3 knock-out mice with retroviral particles encoding the Jak3 gene resulted in reconstitution of normally deficient lymphocyte populations concomitant with improved immune function. In addition, DII can be used to target the delivery of other gene therapy vectors including adenoviral vectors to bone marrow cells in vivo. Taken together, these results demonstrate that in vivo retroviral gene transfer by direct intrafemoral injection may be a viable alternative to current ex vivo gene transfer approaches.

Blood ◽  
2003 ◽  
Vol 102 (2) ◽  
pp. 506-513 ◽  
Author(s):  
Derek A. Persons ◽  
Esther R. Allay ◽  
Nobukuni Sawai ◽  
Phillip W. Hargrove ◽  
Thomas P. Brent ◽  
...  

AbstractSuccessful gene therapy of β-thalassemia will require replacement of the abnormal erythroid compartment with erythropoiesis derived from genetically corrected, autologous hematopoietic stem cells (HSCs). However, currently attainable gene transfer efficiencies into human HSCs are unlikely to yield sufficient numbers of corrected cells for a clinical benefit. Here, using a murine model of β-thalassemia, we demonstrate for the first time that selective enrichment in vivo of transplanted, drug-resistant HSCs can be used therapeutically and may therefore be a useful approach to overcome limiting gene transfer. We used an oncoretroviral vector to transfer a methylguanine methyltransferase (MGMT) drug-resistance gene into normal bone marrow cells. These cells were transplanted into β-thalassemic mice given nonmyeloablative pretransplantation conditioning with temozolomide (TMZ) and O6-benzylguanine (BG). A majority of mice receiving 2 additional courses of TMZ/BG demonstrated in vivo selection of the drug-resistant cells and amelioration of anemia, compared with untreated control animals. These results were extended using a novel γ-globin/MGMT dual gene lentiviral vector. Following drug treatment, normal mice that received transduced cells had an average 67-fold increase in γ-globin expressing red cells. These studies demonstrate that MGMT-based in vivo selection may be useful to increase genetically corrected cells to therapeutic levels in patients with β-thalassemia.


Blood ◽  
1990 ◽  
Vol 75 (2) ◽  
pp. 337-343 ◽  
Author(s):  
CA Corey ◽  
AD DeSilva ◽  
CA Holland ◽  
DA Williams

Recombinant retroviral vectors have been used to transfer a variety of genetic sequences into hematopoietic stem cells. Although transfer and expression of foreign genetic sequences into reconstituting stem cells is one approach to somatic gene therapy, few studies have shown long lasting phenotypic changes in recipient mice in vivo. In this study, we show successful transfer of a methotrexate-resistant cDNA (DHFRr) into reconstituting hematopoietic stem cells using a retroviral vector, FrDHFRr, in which the DHFR cDNA is expressed off a hybrid Friend/Moloney long term repeat. Both primary and secondary recipients transplanted with bone marrow cells infected with this recombinant retrovirus show improved survival and protection from methotrexate- induced marrow toxicity when compared with control animals. These data suggest that retroviral-mediated gene transfer of DHFRr cDNA leads to a stable change in the phenotype of hematopoietic stem cells and progeny derived from those cells in vivo after bone marrow transplantation. Gene transfer using recombinant retroviral vectors seems to be one rational approach to establishing chemotherapy-resistant bone marrow cells.


Blood ◽  
1992 ◽  
Vol 80 (2) ◽  
pp. 396-402 ◽  
Author(s):  
BD Luskey ◽  
M Rosenblatt ◽  
K Zsebo ◽  
DA Williams

The efficiency of retroviral-mediated gene transfer into hematopoietic stem cells (HSC) is dependent on the survival and self-renewal of HSC in vitro during retroviral infection. We have examined the effect of prestimulation of bone marrow with various cytokines, including the product of the Steel gene, Steel factor or stem cell factor (SCF) (the ligand for the c-kit receptor) on the efficiency of retroviral transduction of the human adenosine deaminase (hADA) cDNA into murine HSC. Bone marrow cells were prestimulated for 48 hours with hematopoietic growth factors, then cocultivated with the packaging cell line producing the ZipPGK-ADA simplified retrovirus for an additional 48 hours with continued growth factor exposure. Nonadherant cells from these cocultures were injected into lethally irradiated recipients. The content of day 12 colony-forming unit-spleen (CFU-S12) in SCF/interleukin 6 (IL-6)-prestimulated and cocultured bone marrow was more than threefold greater than that of IL-3/IL-6-prestimulated bone marrow cells. All mice receiving bone marrow cells infected with the PGK-ADA virus after prestimulation with IL-3/IL-6 or SCF/IL-6 demonstrated hADA expression in the peripheral blood after full hematopoietic reconstitution. While all recipients of IL-3/IL-6- prestimulated bone marrow expressed hADA at 4 months posttransplant, in three independent experiments examining a total of 33 mice, in most recipients of SCF/IL-6-prestimulated and infected bone marrow cells, the expression of human enzyme was higher than IL-3/IL-6 mice. Southern blot analysis of DNA from hematopoietic tissues from these same mice prepared at least 4 months posttransplantation also demonstrated a higher infection efficiency of HSC as measured by proviral integration patterns and genome copy number analysis. These results suggest that the higher level of hADA expression seen in mice receiving marrow prestimulated with SCF/IL-6 before retroviral infection is due to more efficient infection of reconstituting HSC. Other growth factor combinations were also studied; however, prestimulation with SCF/IL-6 or IL-3/IL-6 appeared optimal. Using retroviral-mediated gene transfer and viral integration patterns, Steel factor (SCF) in combination with IL-6 appears to increase the survival and self-renewal of reconstituting hematopoietic stem cells and proves useful in effecting expression of foreign genes in transplant recipients. Such pretreatment may also be useful in the application of retroviral transfer methods to human cells.


Blood ◽  
1990 ◽  
Vol 75 (2) ◽  
pp. 337-343 ◽  
Author(s):  
CA Corey ◽  
AD DeSilva ◽  
CA Holland ◽  
DA Williams

Abstract Recombinant retroviral vectors have been used to transfer a variety of genetic sequences into hematopoietic stem cells. Although transfer and expression of foreign genetic sequences into reconstituting stem cells is one approach to somatic gene therapy, few studies have shown long lasting phenotypic changes in recipient mice in vivo. In this study, we show successful transfer of a methotrexate-resistant cDNA (DHFRr) into reconstituting hematopoietic stem cells using a retroviral vector, FrDHFRr, in which the DHFR cDNA is expressed off a hybrid Friend/Moloney long term repeat. Both primary and secondary recipients transplanted with bone marrow cells infected with this recombinant retrovirus show improved survival and protection from methotrexate- induced marrow toxicity when compared with control animals. These data suggest that retroviral-mediated gene transfer of DHFRr cDNA leads to a stable change in the phenotype of hematopoietic stem cells and progeny derived from those cells in vivo after bone marrow transplantation. Gene transfer using recombinant retroviral vectors seems to be one rational approach to establishing chemotherapy-resistant bone marrow cells.


Blood ◽  
1992 ◽  
Vol 80 (2) ◽  
pp. 396-402 ◽  
Author(s):  
BD Luskey ◽  
M Rosenblatt ◽  
K Zsebo ◽  
DA Williams

Abstract The efficiency of retroviral-mediated gene transfer into hematopoietic stem cells (HSC) is dependent on the survival and self-renewal of HSC in vitro during retroviral infection. We have examined the effect of prestimulation of bone marrow with various cytokines, including the product of the Steel gene, Steel factor or stem cell factor (SCF) (the ligand for the c-kit receptor) on the efficiency of retroviral transduction of the human adenosine deaminase (hADA) cDNA into murine HSC. Bone marrow cells were prestimulated for 48 hours with hematopoietic growth factors, then cocultivated with the packaging cell line producing the ZipPGK-ADA simplified retrovirus for an additional 48 hours with continued growth factor exposure. Nonadherant cells from these cocultures were injected into lethally irradiated recipients. The content of day 12 colony-forming unit-spleen (CFU-S12) in SCF/interleukin 6 (IL-6)-prestimulated and cocultured bone marrow was more than threefold greater than that of IL-3/IL-6-prestimulated bone marrow cells. All mice receiving bone marrow cells infected with the PGK-ADA virus after prestimulation with IL-3/IL-6 or SCF/IL-6 demonstrated hADA expression in the peripheral blood after full hematopoietic reconstitution. While all recipients of IL-3/IL-6- prestimulated bone marrow expressed hADA at 4 months posttransplant, in three independent experiments examining a total of 33 mice, in most recipients of SCF/IL-6-prestimulated and infected bone marrow cells, the expression of human enzyme was higher than IL-3/IL-6 mice. Southern blot analysis of DNA from hematopoietic tissues from these same mice prepared at least 4 months posttransplantation also demonstrated a higher infection efficiency of HSC as measured by proviral integration patterns and genome copy number analysis. These results suggest that the higher level of hADA expression seen in mice receiving marrow prestimulated with SCF/IL-6 before retroviral infection is due to more efficient infection of reconstituting HSC. Other growth factor combinations were also studied; however, prestimulation with SCF/IL-6 or IL-3/IL-6 appeared optimal. Using retroviral-mediated gene transfer and viral integration patterns, Steel factor (SCF) in combination with IL-6 appears to increase the survival and self-renewal of reconstituting hematopoietic stem cells and proves useful in effecting expression of foreign genes in transplant recipients. Such pretreatment may also be useful in the application of retroviral transfer methods to human cells.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2017 ◽  
Author(s):  
Philippe E. Mangeot ◽  
Valérie Risson ◽  
Floriane Fusil ◽  
Aline Marnef ◽  
Emilie Laurent ◽  
...  

AbstractProgrammable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Using engineered murine leukemia virus-like particles loaded with Cas9/sgRNA ribonucleoproteins (“Nanoblades”), we were able to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades were also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for “all-in-one” homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 356-364 ◽  
Author(s):  
RF Carter ◽  
AC Abrams-Ogg ◽  
JE Dick ◽  
SA Kruth ◽  
VE Valli ◽  
...  

Abstract Retroviral infection of bone marrow cells in long-term marrow cultures (LTMCs) offers several theoretical advantages over other methods for gene transfer into hematopoietic stem cells. To investigate the feasibility of this approach in a large animal model system, we subjected LTMCs from nine dogs to multiple infections with retrovirus containing the neomycin phosphotransferase gene (neo) during 21 days of culture. Feeder layers, cocultivation, polycations, and selection were not used. The in vitro gene transfer efficiency was 70% as determined by polymerase chain reaction amplification of neo sequences in colony- forming unit granulocyte-macrophage (CFU-GM) obtained from day-21 LTMCs. Day-21 LTMC cells were infused into autologous recipients with (four dogs) and without (three dogs) marrow-ablative conditioning. At 3 months posttransplant, up to 10% of marrow cells contained the neo gene. This percentage declined to 0.1% to 1% at 10 to 21 months posttransplant. Neo was also detected in individual CFU-GM, burst- forming unit-erythroid (BFU-E), and CFU-Mix progenitors derived from marrow up to 21 months postinfusion and in cultures of peripheral blood- derived T cells up to 19 months postinfusion. There was no difference in the percentage of neo-marked cells present when dogs that received marrow ablative conditioning were compared with dogs receiving no conditioning. Detection of neo-marked marrow cells almost 2 years after autologous transplantation in a large mammalian species shows that retroviral infection of marrow cells in LTMCs is a potentially nontoxic and efficient protocol for gene transfer. Further, our results suggest that marrow conditioning and in vivo selection pressure to retain transplanted cells may not be absolute requirements for the retention of genetically marked cells in vivo.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1748-1755 ◽  
Author(s):  
David Bryder ◽  
Sten E. W. Jacobsen

Abstract Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin−Sca-1+kit+ bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3.


Sign in / Sign up

Export Citation Format

Share Document