scholarly journals A thrombomodulin mutation that impairs activated protein C generation results in uncontrolled lung inflammation during murine tuberculosis

Blood ◽  
2005 ◽  
Vol 106 (8) ◽  
pp. 2761-2768 ◽  
Author(s):  
Sebastiaan Weijer ◽  
Catharina W. Wieland ◽  
Sandrine Florquin ◽  
Tom van der Poll

AbstractThrombomodulin (TM) plays an essential role in the generation of activated protein C (APC), a mediator with both anticoagulant and anti-inflammatory properties, and is preferentially expressed in lungs. To investigate the role of TM in the coagulant and inflammatory response in the lung during tuberculosis, mice with a mutation in the TM gene (Thbd), which results in a minimal capacity for APC generation (TMpro/pro mice), were intranasally infected with live virulent Mycobacterium tuberculosis. Whereas pulmonary tuberculosis was not associated with activation of coagulation in either wild-type or TMpro/pro mice, 5 weeks after infection TMpro/pro mice displayed an uncontrolled inflammatory response in their lungs, as reflected by higher lung weights, a diminished ability to form well-shaped granulomas, elevated levels of proinflammatory cytokines, and concurrently reduced concentrations of anti-inflammatory cytokines. During a 36-week follow-up after infection with a lower dose of M tuberculosis, 35% of TMpro/pro mice died from week 28 onward versus none of the wild-type mice, and the surviving TMpro/pro mice displayed increased lung inflammation accompanied by higher mycobacterial loads in liver and spleen. These data suggest that a TM mutation that impairs APC generation results in uncontrolled lung inflammation during tuberculosis.

1996 ◽  
Vol 75 (05) ◽  
pp. 760-766 ◽  
Author(s):  
Marc G L M Elisen ◽  
Machiel H H Maseland ◽  
Frank C Church ◽  
Bonno N Bouma ◽  
Joost C M Meijers

SummaryInteractions between proteins and heparin(-like) structures involve electrostatic forces and structural features. Based on charge distributions in the linear sequence of protein C inhibitor (PCI), two positively charged regions of PCI were proposed as possible candidates for this interaction. The first region, the A+ helix, is located at the N-terminus (residues 1-11), whereas the second region, the H helix, is positioned between residues 264 and 280 of PCI. Competition experiments with synthetic peptides based on the sequence of these regions demonstrated that the H helix has the highest affinity for heparin. In contrast to previous observations we found that the A+ helix peptide competed for the interaction of PCI with heparin, but its affinity was much lower than that of the H helix peptide.Recombinant PCI was also used to investigate the role of the A+ helix in heparin binding. Full-length (wild-type) rPCI as well as an A+ helix deletion mutant of PCI (rPCI-Δ2-l 1) were expressed in baby hamster kidney cells and both had normal inhibition activity with activated protein C and thrombin. The interaction of the recombinant PCIs with heparin was investigated and compared to plasma PCI. The A+ helix deletion mutant showed a decreased affinity for heparin in inhibition reactions with activated protein C and thrombin, but had similar association constants compared to wild-type rPCI. The synthetic A+ helix peptide competed with rPCI-Δ2-11 for binding to heparin. This indicated that the interaction between PCI and heparin is fairly non-specific and that the interaction is primarily based on electrostatic interactions.In summary, our data suggest that the H helix of PCI is the main heparin binding region of PCI, but the A+ helix increases the overall affinity for the PCI-heparin interaction by contributing a second positively charged region to the surface of PCI.


2006 ◽  
Vol 396 (2) ◽  
pp. 355-362 ◽  
Author(s):  
Fatbardha Varfaj ◽  
Julie Neuberg ◽  
P. Vincent Jenkins ◽  
Hironao Wakabayashi ◽  
Philip J. Fay

APC (activated Protein C) inactivates human Factor VIIIa following cleavage at residues Arg336 and Arg562 within the A1 and A2 subunits respectively. The role of the P1 arginine in APC-catalysed inactivation of Factor VIIIa was examined by employing recombinant Factor VIIIa molecules where residues 336 and 562 were replaced with alanine and/or glutamine. Stably expressed Factor VIII proteins were activated by thrombin and resultant Factor VIIIa was reacted at high concentration with APC to minimize cofactor inactivation due to A2 subunit dissociation. APC cleaved wild-type Factor VIIIa at the A1 site with a rate ∼25-fold greater than that for the A2 site. A1 mutants R336A and R336Q were inactivated ∼9-fold slower than wild-type Factor VIIIa, whereas the A2 mutant R562A was inactivated ∼2-fold slower. No cleavage at the mutated sites was observed. Taken together, these results suggested that cleavage at the A1 site was the dominant mechanism for Factor VIIIa inactivation catalysed by the proteinase. On the basis of cleavage at Arg336, a Km value for wild-type Factor VIIIa of 102 nM was determined, and this value was significantly greater than Ki values (∼9–18 nM) obtained for an R336Q/R562Q Factor VIIIa. Furthermore, evaluation of a series of cluster mutants in the C-terminal region of the A1 subunit revealed a role for acidic residues in segment 341–345 in the APC-catalysed proteolysis of Arg336. Thus, while P1 residues contribute to catalytic efficiency, residues removed from these sites make a primary contribution to the overall binding of APC to Factor VIIIa.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 425-425
Author(s):  
Michelle M Storage ◽  
Jianzhong An ◽  
Helena Liang ◽  
Qiuhui Yang ◽  
Mark Zogg ◽  
...  

Abstract Introduction: Murine models suggest that the Thrombomodulin-Protein C system plays a critical role in placentation and the maintenance of pregnancy. Severe Protein C deficiency in the mother results in pregnancy failure in early gestation. Thrombomodulin (Thbd) or the Endothelial Protein C Receptor (EPCR/ProcR) gene deletions result in embryonic death, secondary to developmental and functional abnormalities of the placenta. These molecules play multiple roles in coagulation and inflammation. The mechanisms governing their role in placental development and maintenance of placental function remain to be fully understood. The objective of this work is to identify the critical functions of EPCR and Thbd that are required for placental development. Both Thbd and EPCR augment activated protein C generation, albeit to different extents. We have examined if reduced activated Protein C generation mediates placental abnormalities of EPCR- and Thbd-null mice. Activation of thrombin receptors expressed on platelets and trophoblast cells can also contribute to placental failure. We examined the role of thrombin receptor Par4 in placental failure of EPCR-null mice. Methods: To assess the role of a PC generation in placental phenotype of Thbd- and EPCR-null mice, we used a transgene to express a hyperactivatable form of murine protein C (hMPC) under the control of transthyretin promoter. Thrombin cleaves this mutant form of Protein C 30-fold more efficiently than wild type protein C, without requiring the cofactor function of thrombomodulin. Wild type mice expressing hMPC show 2-fold increase in PC and 3-fold increase in aPC levels. hMPC expression in PC-null mice restores their ability to carry pregnancies. Breeding strategies were used to generate hMPCtg ProcR+/- or hMPCtg Thbd+/- female mice. These were mated to ProcR+/- or Thbd+/- males, respectively, and survival of ProcR-/- and Thbd-/- embryos was analyzed. Similar genetic strategy was used to analyze the role of thrombin receptor Par4 in the demise of EPCR-null embryos. Placental phenotypes and embryonic survival was compared with experiments in which the mother was continuously infused with LMWH using a subcutaneous osmotic pump. Results: As previously reported, EPCR-null mice die before 10.5 days post coitum (dpc) (ProcR+/- intercrosses, out of 41 live embryos none were ProcR-/-, 10 were expected, 21 aborted not genotyped, 7 pregnancies analyzed at 11.5 dpc) and none are found at wean (out of 30 live pups none were ProcR-/-, 8 were expected, 5 litters analyzed). Transgenic expression of hMPC in the mother resulted in some live ProcR-/- embryos at 11.5 dpc (4 ProcR-/- out of 41 live embryos, 10 were expected, 15 aborted not genotyped, 7 pregnancies at 11.5 dpc) and pups at wean (2 ProcR-/- out of 28 live, 7 litters analyzed). Despite transgenic hMPC expression ProcR-/- embryos and pups were underrepresented (P=0.007, chi square GOF test). Surviving ProcR-/- embryos showed normal placental histology grossly comparable to littermate controls. Expression of hMPC in the mother did not ameliorate fetal death of Thbd-null mice (out of 38 live embryos none were Thbd-/-, 10 expected, 16 aborted not genotyped, 7 pregnancies at 9.5 dpc). Continuous infusion of LMWH also resulted in some live ProcR-/- embryos at 11.5 dpc (3 ProcR-/- out of 19 live embryos, 5 expected, 11 aborted not genotyped, 3 pregnancies analyzed), but two were growth retarded and all 3 placentae showed markedly reduced placental labyrinth formation. In contrast to transgenic expression of hMPC and treatment with LMWH, when Par4-/- ProcR+/- animals were intercrossed, ProcR-/- animals were born at an expected Mendelian frequency (7 ProcR-/- out of 35 live pups, 9 expected, 7 litters analyzed). Conclusions: Our results show that transgenic expression of hMPC allows normal placental development and rescues a fraction of EPCR-null embryos. Thus, placental defect of EPCR-null mice is in part mediated by reduced generation of aPC on placental cells. In contrast to the transgenic expression of hMPC and LMWH treatment, genetic absence of Par4 completely overcame the placental defect and allowed development of EPCR-null embryos. Further studies will clarify contributions of maternal versus fetal Par4 in this phenomenon. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 111 (05) ◽  
pp. 970-980 ◽  
Author(s):  
J. Daan de Boer ◽  
Liesbeth M. Kager ◽  
Joris J. T. H. Roelofs ◽  
Joost C. M. Meijers ◽  
Charles T. Esmon ◽  
...  

SummaryPneumococcal pneumonia is a frequent cause of gram-positive sepsis and has a high mortality. The endothelial protein C receptor (EPCR) has been implicated in both the activation of protein C (PC) and the anti-inflammatory actions of activated (A)PC. The aim of this study was to determine the role of the EPCR in murine pneumococcal pneumonia and sepsis. Wild-type (WT), EPCR knockout (KO) and Tie2-EPCR mice, which overexpress EPCR on the endothelium, were infected intranasally (pneumonia) or intravenously (sepsis) with viable Streptococcus pneumoniae and euthanised at 24 or 48 hours after initiation of the infection for analyses. Pneumonia did not alter constitutive EPCR expression on pulmonary endothelium but was associated with an influx of EPCR positive neutrophils into lung tissue. In pneumococcal pneumonia EPCR KO mice demonstrated diminished bacterial growth in the lungs and dissemination to spleen and liver, reduced neutrophil recruitment to the lungs and a mitigated inflammatory response. Moreover, EPCR KO mice displayed enhanced activation of coagulation in the early phase of disease. Correspondingly, in pneumococcal sepsis EPCR KO mice showed reduced bacterial growth in lung and liver and attenuated cytokine release. Conversely, EPCR-overexpressing mice displayed higher bacterial outgrowth in lung, blood, spleen and liver in pneumococcal sepsis. In conclusion, EPCR impairs antibacterial defense in both pneumococcal pneumonia and sepsis, which is associated with an enhanced pro-inflammatory response.


Pneumologie ◽  
2013 ◽  
Vol 67 (S 01) ◽  
Author(s):  
X Lai ◽  
C Schulz ◽  
F Seifert ◽  
B Dolniak ◽  
O Wolkenhauer ◽  
...  

2004 ◽  
Vol 32 (Supplement) ◽  
pp. S262-S265 ◽  
Author(s):  
Koji Suzuki ◽  
Esteban Cesar Gabazza ◽  
Tatsuya Hayashi ◽  
Haruhiko Kamada ◽  
Yukihiko Adachi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document