scholarly journals TACI-BLyS signaling via B-cell–dendritic cell cooperation is required for naive CD8+ T-cell priming in vivo

Blood ◽  
2006 ◽  
Vol 107 (2) ◽  
pp. 594-601 ◽  
Author(s):  
Yaiza Diaz-de-Durana ◽  
George T. Mantchev ◽  
Richard J. Bram ◽  
Alessandra Franco

AbstractWe demonstrated that B-cell–dendritic cell (DC) interactions via transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI) and B-lymphocyte stimulator (BLyS) provide an early signal critical to generate adequate numbers of mature antigen presenting cells (APCs) to prime naive CD8+ T cells (CTLs) in vivo. Evidence that B cells are required for efficient CTL generation in mice and that reconstitution with wild-type but not TACI-knockout B cells restored normal CTL responses support our conclusion. Moreover, low doses of a TACI fusion protein (TACI-Fc) that express the extracellular domain of TACI (amino acid [aa] 1-126) restored CTL priming in B-cell–deficient mice in vivo and induced DC maturation in vitro. In fact, following interactions with B cells, splenic DCs rapidly express the CD86 costimulatory molecule, to an extent comparable to the exposure to antigenic stimuli. BLyShigh peptide-pulsed bone marrow–derived DCs, used as vaccines in vivo, cannot generate CTLs in B-cell–deficient and TACI-deficient mice, strongly supporting a need for B-cell–DC cooperation through TACI-BLyS during CTL first encounter with antigens in vivo.

2003 ◽  
Vol 198 (7) ◽  
pp. 1119-1126 ◽  
Author(s):  
Anselm Enders ◽  
Philippe Bouillet ◽  
Hamsa Puthalakath ◽  
Yuekang Xu ◽  
David M. Tarlinton ◽  
...  

During development, the stochastic process assembling the genes encoding antigen receptors invariably generates B and T lymphocytes that can recognize self-antigens. Several mechanisms have evolved to prevent the activation of these cells and the concomitant development of autoimmune disease. One such mechanism is the induction of apoptosis in developing or mature B cells by engagement of the B cell antigen receptor (BCR) in the absence of T cell help. Here we report that B lymphocytes lacking the pro-apoptotic Bcl-2 family member Bim are refractory to apoptosis induced by BCR ligation in vitro. The loss of Bim also inhibited deletion of autoreactive B cells in vivo in two transgenic systems of B cell tolerance. Bim loss prevented deletion of autoreactive B cells induced by soluble self-antigen and promoted accumulation of self-reactive B cells developing in the presence of membrane-bound self-antigen, although their numbers were considerably lower compared with antigen-free mice. Mechanistically, we determined that BCR ligation promoted interaction of Bim with Bcl-2, inhibiting its survival function. These findings demonstrate that Bim is a critical player in BCR-mediated apoptosis and in B lymphocyte deletion.


2002 ◽  
Vol 22 (13) ◽  
pp. 4771-4780 ◽  
Author(s):  
Kuo-I Lin ◽  
Cristina Angelin-Duclos ◽  
Tracy C. Kuo ◽  
Kathryn Calame

ABSTRACT B-cell lineage-specific activator protein (BSAP), encoded by the Pax-5 gene, is critical for B-cell lineage commitment and B-cell development but is not expressed in terminally differentiated B cells. We demonstrate a direct connection between BSAP and B-lymphocyte-induced maturation protein 1 (Blimp-1), a transcriptional repressor that is sufficient to drive plasmacytic differentiation. Blimp-1 binds a site on the Pax-5 promoter in vitro and in vivo and represses the Pax-5 promoter in a binding-site-dependent manner. By ectopically expressing Blimp-1 or a competitive inhibitor of Blimp-1, we show that Blimp-1 is both necessary and sufficient to repress Pax-5 during plasmacytic differentiation of primary splenic B cells. Blimp-1-dependent repression of Pax-5 is sufficient to regulate BSAP targets CD19 and J chain and is necessary but not sufficient to induce XBP-1. We further show that repression of Pax-5 is required for Blimp-1 to drive differentiation of splenocytes to immunoglobulin M-secreting cells. Thus, repression of Pax-5 plays a critical role in the Blimp-1-dependent program of plasmacytic differentiation.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Tin Kyaw ◽  
Hamid Hosseini ◽  
Peter Kanellakis ◽  
Christopher Tay ◽  
Anh Cao ◽  
...  

Background: B1a B cells attenuate atherosclerosis by secreting natural IgM, but their therapeutic application is limited by lack of availability. Regulatory B cells identified by Tim-1 expression and expanded through Tim-1 ligation by anti-TIM-1 low affinity monoclonal antibody (RMT1-10 mAb) induced tolerance. Here, we examined the capacity of this mAb to expand B1a B cells to inhibit atherosclerosis development and progression of established atherosclerosis. Methods and Results: Six-week old male ApoE-deficient mice were treated with RMT1-10 mAb and fed a high-fat diet (HFD) for 8 weeks. B1a TIM-1+IgM+ B cells and B1a TIM-1+IgM+IL-10+ B cells were selectively expanded. These effects reduced lesion size, markedly increased plasma and lesion IgM and decreased lesion oxidatively modified LDL. Lesion CD4+ and CD8+ T cells, macrophages and MCP-1, VCAM-1, proinflammatory cytokine expression, apoptotic cell numbers and necrotic cores were reduced. Splenectomy indicated that these effects were B1a B cell-dependent. B1a B cell stimulation in vitro with RMT1-10 mAb promoted dose-response B1a B cell proliferation and B1a-derived IgM production. To determine whether treatment attenuated developed atherosclerosis progression, 6 week-old male ApoE-deficient mice were fed a HFD for 6 weeks, and treated with anti-TIM-1 mAb for another 6 weeks while continuing the HFD. Treatment also increased B1a TIM-1+IgM+ B cells, B1a TIM-1+IgM+IL-10+ B cells and IgM levels and greatly attenuated atherosclerosis progression. Conclusions: Anti-TIM-1 treatment attenuates atherosclerosis development and progression by selectively expanding atheroprotective B1a B cells and modulating its immunoinflammatory component. TIM-1 mAb therapy could be an attractive approach for treating atherosclerosis.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2277-2283 ◽  
Author(s):  
Veronika Sexl ◽  
Roland Piekorz ◽  
Richard Moriggl ◽  
Juerg Rohrer ◽  
Michael P. Brown ◽  
...  

Abstract The cytokines interleukin 7 (IL-7) and interleukin 4 (IL-4) regulate lymphoid differentiation and function and activate the transcription factor Stat5. Using mice deficient for the 2 highly related transcription factors, Stat5a and Stat5b (Stat5a/b−/−), we investigated the role of Stat5 for B-cell differentiation, expansion, and function. Peripheral blood B cells of Stat5-deficient mice are significantly reduced, but no proliferation defects in response to various mitogenic stimuli are found. Also, IgM and IgG1 antibody production and immunoglobulin class switching are not affected. Pre- and pro-B cells of Stat5-deficient animals were found to have reduced responses to IL-7. Pro- and pre-B cells are the target cells of the abloncogene and numerous studies have suggested that Stat5a/b is essential for transformation by derivatives of the Abelson(abl) gene. To assess the role of Stat5a/b in transformation, we have evaluated the ability of variousabl derivatives to transform cells from Stat5a/b-deficient mice in vitro or in vivo. We demonstrate that the absence of Stat5a/b is not essential for the induction of lymphoid or myeloid tumors in vivo or on the ability to transform bone marrow cells in vitro.


2013 ◽  
Vol 94 (7) ◽  
pp. 1613-1623 ◽  
Author(s):  
V. L. de Oliveira ◽  
S. C. P. Almeida ◽  
H. R. Soares ◽  
R. M. E. Parkhouse

To better understand the role of the M2 protein of the murine herpes virus strain 68 (MHV-68) in vivo, B-lymphocyte-restricted, M2-transgenic mice were constructed. The transgenic mice contained normal B-cell subpopulations in bone marrow, lymph nodes and spleen. After immunization with sheep red blood cells, spleens from M2-transgenic mice had increased germinal centres. Transgenic mice responded to the T-cell-dependent antigen keyhole limpet haemocyanin (KLH) with higher levels of secondary IgM and IgG2a antibodies than WT mice. Normal and M2-transgenic mice were infected with WT and M2 frame-shift mutant (M2FS) MHV-68 viruses. The pathogenesis of M2-transgenic mice infected with the M2-deficient mutant virus did not revert to that observed upon infection of normal mice with WT virus. However, the higher reactivation levels late after M2-transgenic mice were infected with WT virus reflected the importance of M2 as a target for the immune response, and thus with an impact on the establishment of latency. Finally, there was markedly less apoptosis in B-cells from M2-transgenic mice infected with either WT or M2FS mutant than from similarly infected WT mice, consistent with the published inhibitory influence of M2 on apoptosis in vitro. Thus, M2 provides a strategy to increase the pool of germinal centre B-cells through inhibition of apoptosis in the infected cell.


1995 ◽  
Vol 182 (4) ◽  
pp. 915-922 ◽  
Author(s):  
M M Epstein ◽  
F Di Rosa ◽  
D Jankovic ◽  
A Sher ◽  
P Matzinger

B cells are an abundant population of lymphocytes that can efficiently capture, process, and present antigen for recognition by activated or memory T cells. Controversial experiments and arguments exist, however, as to whether B cells are or should be involved in the priming of virgin T cells in vivo. Using B cell-deficient mice, we have studied the role of B cells as antigen-presenting cells in a wide variety of tests, including assays of T cell proliferation and cytokine production in responses to protein antigens, T cell killing to minor and major histocompatibility antigens, skin graft rejection, and the in vitro and in vivo responses to shistosome eggs. We found that B cells are not critical for either CD4 or CD8 T cell priming in any of these systems. This finding lends support to the notion that the priming of T cells is reserved for specialized cells such as dendritic cells and that antigen presentation by B cells serves distinct immunological functions.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2277-2283 ◽  
Author(s):  
Veronika Sexl ◽  
Roland Piekorz ◽  
Richard Moriggl ◽  
Juerg Rohrer ◽  
Michael P. Brown ◽  
...  

The cytokines interleukin 7 (IL-7) and interleukin 4 (IL-4) regulate lymphoid differentiation and function and activate the transcription factor Stat5. Using mice deficient for the 2 highly related transcription factors, Stat5a and Stat5b (Stat5a/b−/−), we investigated the role of Stat5 for B-cell differentiation, expansion, and function. Peripheral blood B cells of Stat5-deficient mice are significantly reduced, but no proliferation defects in response to various mitogenic stimuli are found. Also, IgM and IgG1 antibody production and immunoglobulin class switching are not affected. Pre- and pro-B cells of Stat5-deficient animals were found to have reduced responses to IL-7. Pro- and pre-B cells are the target cells of the abloncogene and numerous studies have suggested that Stat5a/b is essential for transformation by derivatives of the Abelson(abl) gene. To assess the role of Stat5a/b in transformation, we have evaluated the ability of variousabl derivatives to transform cells from Stat5a/b-deficient mice in vitro or in vivo. We demonstrate that the absence of Stat5a/b is not essential for the induction of lymphoid or myeloid tumors in vivo or on the ability to transform bone marrow cells in vitro.


1992 ◽  
Vol 12 (2) ◽  
pp. 518-530
Author(s):  
R Palacios ◽  
J Samaridis

We describe here the development and characterization of the FLS4.1 stromal line derived from 15-day fetal liver of BALB/c embryos and defined culture conditions that efficiently support the cloning and long-term growth of nontransformed B-220+ 14-day fetal liver cells at two stages of B-cell development, namely, pro-B lymphocytes (immunoglobulin [Ig] genes in germ line configuration) and pre-B cells (JH-rearranged genes with both light-chain Ig genes in the germ line state). All B-cell precursor clones require recombinant interleukin-7 (rIL-7) and FLS4.1 stromal cells for continuous growth in culture, but pro-B lymphocyte clones can also proliferate in rIL-3. None proliferate in rIL-1, rIL-2, rIL-4, rIL-5, rIL-6, or leukemia inhibitory factor. FLS4.1 stromal cells synthesize mRNA for Steel factor but not for IL-1 to IL-7; all pro-B and pre-B clones express c-Kit, the receptor for Steel factor, and a c-Kit-specific antibody inhibits the enhanced proliferative response of fetal liver B-220+ B-cell precursors supported by FLS4.1 stromal cells and exogenous rIL-7 but does not affect that promoted by rIL-7 alone. Northern (RNA) blot analysis of the expression of the MB-1, lambda 5, Vpre-B, c mu, RAG-1, and RAG-2 genes in pro-B and pre-B clones show that transcription of the MB-1 gene precedes IgH gene rearrangement and RNA synthesis from c mu, RAG-1, RAG-2, lambda 5, and Vpre-B genes. All clones at the pre-B-cell stage synthesize mRNA for c mu, RAG-1, and RAG-2 genes; transcription of the lambda 5 and Vpre-B genes seems to start after D-to-JH rearrangement in B-cell precursors, indicating that the proteins encoded by either gene are not required for B-cell progenitors to undergo D-to-JH gene rearrangement. These findings mark transcription of the MB-1 gene as one of the earliest molecular events in commitment to develop along the B-lymphocyte pathway. Indeed, both pro-B and pre-B clones can generate in vitro and in vivo B lymphocytes but not T lymphocytes; moreover, these clones do not express the CD3-gamma T-cell-specific gene, nor do they have rearranged gamma, delta, or beta T-cell antigen receptor genes.


2002 ◽  
Vol 9 (2) ◽  
pp. 86-95 ◽  
Author(s):  
Denise A. Kaminski ◽  
John J. Letterio ◽  
Peter D. Burrows

Transforming growth factor β (TGFβ) can inhibit thein vitroproliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFβ1-/-mice. To evaluate TGFβ responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7)±TGFβ. Picomolar doses of TGFβ1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1-pre-B cells were sensitive to the inhibitory effects of TGFβ1. However, the large BP1+pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFβ1 is important for normal B cell developmentin vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation.


Sign in / Sign up

Export Citation Format

Share Document