scholarly journals A clinically relevant SCID-hu in vivo model of human multiple myeloma

Blood ◽  
2005 ◽  
Vol 106 (2) ◽  
pp. 713-716 ◽  
Author(s):  
Pierfrancesco Tassone ◽  
Paola Neri ◽  
Daniel R. Carrasco ◽  
Renate Burger ◽  
Victor S. Goldmacher ◽  
...  

Abstract We developed a novel in vivo multiple myeloma (MM) model by engrafting the interleukin 6 (IL-6)-dependent human MM cell line INA-6 into severe combined immunodeficiency (SCID) mice previously given implants of a human fetal bone chip (SCID-hu mice). INA-6 cells require either exogenous human IL-6 (huIL-6) or bone marrow stromal cells (BMSCs) to proliferate in vitro. In this model, we monitored the in vivo growth of INA-6 cells stably transduced with a green fluorescent protein (GFP) gene (INA-6GFP+ cells). INA-6 MM cells engrafted in SCID-hu mice but not in SCID mice that had not been given implants of human fetal bone. The level of soluble human IL-6 receptor (shuIL-6R) in murine serum and fluorescence imaging of host animals were sensitive indicators of tumor growth. Dexamethasone as well as experimental drugs, such as Atiprimod and B-B4-DM1, were used to confirm the utility of the model for evaluation of anti-MM agents. We report that this model is highly reproducible and allows for evaluation of investigational drugs targeting IL-6-dependent MM cells in the human bone marrow (huBM) milieu. (Blood. 2005;106:713-716)

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2455-2455
Author(s):  
Pierfrancesco Tassone ◽  
Paola Neri ◽  
Daniel R. Carrasco ◽  
Renate Burger ◽  
Laurence Catley ◽  
...  

Abstract Human multiple myeloma (MM) xenografts in immunodeficient mice have limitations as a model for the human disease since they lack the human bone marrow (huBM) microenvironment. In contrast, murine models harboring a huBM microenvironment with implantation of patient MM cells in the huBM recapitulate the in vivo pathophysiology of MM and have significant advantages over conventional murine models for pre-clinical evaluation of investigational drugs. However, there are significant limitations in using patient MM cells in such models since i) not all patient MM samples engraft in the huBM; ii) only a fraction of engrafted specimens produce measurable paraprotein and/or osteolytic lesions; and iii) a limited number of MM cells can be harvested from an individual patient, thus limiting the number of mice that can be injected with cells from the same patient. To overcome these limitations, we have developed a novel murine model of MM by engrafting INA-6, a cytokine-dependent human MM cell line into SCID mice previously implanted with a human fetal bone chip (SCID-hu mice). INA-6 cells require either exogenous IL-6 or interaction with the bone marrow stromal cells (BMSCs) to proliferate in vitro. In this model, we monitored the in vivo growth of INA-6 cells stably transfected with a green fluorescent protein (GFP) expression vector (INA-6GFP+). Serum soluble human IL-6 receptor (shuIL-6R) and fluorescence imaging of host animals were sensitive indicators of tumor burden with time dependent increase. Fluorescence imaging was able to detect the myeloma cell growth earlier than measurement of sIL-6R levels. INA-6 MM cells grew in SCID-hu mice, but not in SCID mice injected subcutaneously or intravenously without the human fetal bone. We have further confirmed the feasibility of this model in monitoring the response to therapeutic agents such as dexamethasone by detecting reduction in the intensity of the fluorescent lesions as well as shuIL-6R in SCID-hu mice following anti-MM treatment. This highly reproducible model therefore allows for evaluation of investigational drugs targeting MM cells in the huBM milieu.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5042-5042
Author(s):  
Kenji Ishitsuka ◽  
Teru Hideshima ◽  
Paola Neri ◽  
Sonia Vallet ◽  
Norihiko Shiraishi ◽  
...  

Abstract The interaction between multiple myeloma (MM) cells and the bone marrow (BM) microenvironment plays a crucial role not only in proliferation and survival of MM cells, but also in osteoclastogenesis. In this study, we examined diverse potential of novel p38MAPK inhibitor LSN2322600 (LSN) for MM therapy in vitro and in vivo. The cytotoxic activity of LSN against MM cell lines was modest; however, LSN significantly enhances the cytotoxicity of Bortezomib by down-regulating Bortezomib-induced heat shock protein (HSP) 27 phosphorylation. We next examined the effects of LSN on cytokine secretion in MM cells, bone marrow stromal cells and osteoclast precursor cells. LSN inhibited IL-6 secretion from long-term cultured-bone marrow stromal cells (LT-BMSCs) and bone marrow mononuclear cells (BMMNCs) from MM patients in remission. LSN also inhibited MIP-1 α secretion by fresh tumor cells, BMMNCs and CD14 positive cells. Since these cytokines mediate osteoclastogenesis, we further examined whether LSN could inhibit osteoclastogenesis. Importantly, LSN inhibited in vitro osteoclastogenesis induced by macrophage-colony stimulating factor (M-CSF) and soluble receptor activator of nuclear factor- κ B ligand (sRANKL), as well as osteoclastogenesis in the severe combined immunodeficiency (SCID)-Hu mouse model of human MM. These results suggest that LSN represents a promising novel targeted strategy to reduce skeletal complications as well as to sensitize or overcome resistance to Bortezomib.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 754-765 ◽  
Author(s):  
Mitsuyoshi Urashima ◽  
Benjamin P. Chen ◽  
Shirley Chen ◽  
Geraldine S. Pinkus ◽  
Roderick T. Bronson ◽  
...  

Prior in vitro studies have suggested a role of adhesion molecules, bone marrow stromal cells (BMSCs), and cytokines in the regulation of human multiple myeloma (MM) cell growth and survival. Although in vivo models have been developed in severe combined immunodeficient (SCID) mice that support the growth of human MM within the murine BM microenvironment, these xenograft models do not permit a study of the role of adhesion proteins in human MM cell-human BMSC interactions. We therefore established an in vivo model of human MM using SCID mice implanted with bilateral human fetal bone grafts (SCID-hu mice). For the initial tumor innoculum, human MM derived cell lines (1 × 104 or 5 × 104 ARH-77, OCI-My5, U-266, or RPMI-8226 cells) were injected directly into the BM cavity of the left bone implants in irradiated SCID-hu mice. MM cells engrafted and proliferated in the left human fetal bone implants within SCID-hu mice as early as 4 weeks after injection of as few as 1 × 104 MM cells. To determine whether homing of tumor cells occurred, animals were observed for up to 12 weeks after injection and killed to examine for tumor in the right bone implants. Of great interest, metastases to the right bone implants were observed at 12 weeks after the injection of 5 × 104 MM cells, without spread of human MM cells to murine BM. Human MM cells were identified on the basis of characteristic histology and monoclonal human Ig. Importantly, monoclonal human Ig and human interleukin-6 (IL-6), but not human IL-1β or tumor necrosis factor-α, were detectable in sera of SCID-hu mice injected with MM cells. In addition, specific monoclonal Ig light chain deposition was evident within renal tubules. This in vivo model of human MM provides for the first time a means for identifying adhesion molecules that are responsible for specific homing of human MM cells to the human, as opposed to murine, BM microenvironment. Moreover, induction of human IL-6 suggests the possibility that regulation of MM cell growth by this cytokine might also be investigated using this in vivo model.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3449-3449
Author(s):  
Xiaohua Xin ◽  
Yan Tang ◽  
Yoko Oei ◽  
Helen Ye ◽  
Daniel Menezes ◽  
...  

Abstract Multiple myeloma (MM) remains a fatal hematological malignancy due to the development of drug resistance to conventional high-dosage chemotherapy. It has been demonstrated that the bone marrow microenvironment, where MM cells preferentially home and grow, plays a crucial role in developing resistance to therapies for MM. Recent understanding of the molecular pathology of MM has provided novel therapeutic targets for treatment of this disease. The ectopic expression of FGFR3, which occurs in approximately 15–20% MM patients resulting from a t(4;14) chromosomal translocation and confers a particularly poor prognosis in clinic, has become an attractive therapeutic target for MM. CHIR-258 is a small molecule inhibitor of Class III, IV and V receptor tyrosine kinases, including FGFR, VEGFR and PDGFR (IC50s ~5–15 nM in kinase assays). It has been demonstrated that CHIR-258 inhibits FGFR3 autophosphorylation, downstream signaling and cell proliferation in FGFR3 mutant MM cells in vitro as well as induces apoptosis in FGFR3 positive primary myeloma cells (Trudel, et.al, Blood 2005). To evaluate the anti-myeloma efficacy of CHIR-258, we developed an in vivo MM model in which multi-organ MM lesions developed after tail vein injection of human KMS-11-luc cells stably transfected with luciferase. This cell line harbors the t(4;14) translocation and expresses constitutively active FGFR3 (Y373C mutation). Non-invasive bioluminescent imaging (BLI) was used to monitor the in vivo growth and dissemination of KMS-11-luc MM tumors. Early detection and serial imaging monitoring the growth of metastatic lesions was successfully captured by BLI in this model. Nearly all mice injected with KMS-11-luc tumor cells were found to develop MM lesions, which were mainly localized in spine, skull and pelvis. We examined CHIR-258 anti-myeloma efficacy in this model and found that daily oral administration of CHIR-258 at 20 mg/kg, a dose that was demonstrated to inhibit phosphorylation of ERK in KMS-11-luc tumors in vivo, resulted in a significant inhibition of tumor growth. Furthermore, this anti-tumor activity of CHIR-258 translated to a significant improvement of animal survival compared to vehicle treatment in this model. In vitro combination studies with dexamethasone and bortezomib in KMS-11 cells demonstrated synergistic and additive effects, respectively. The development of this KMS-11-luc in vivo model will allow further evaluation of CHIR-258 combination therapy with conventional or other molecularly targeted agents. These studies have provided further rationale for the ongoing clinical trials of CHIR-258 in MM.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 452-452
Author(s):  
Teresa Calimeri ◽  
Edmondo Battista ◽  
Francesco Conforti ◽  
Paola Neri ◽  
Maria Teresa Di Martino ◽  
...  

Abstract Abstract 452 The critical role of the human bone marrow microenvironment (HuBMM) in the pathogenesis of Multiple Myeloma (MM) has recently allowed the design of novel therapeutical approaches targeting not only MM cells but also their specific HuBMM. However, the lack of adequate mouse models, capable to recapitulate a HuBMM, has restrained large scale in vivo screening of investigational drugs. In fact, only the SCID-hu model, in which human MM cells are grown in human fetal bone chips previously implanted in SCID mice, addresses this specific requirement. However the poor availability of human fetal bone chips, the allogeneic nature of the fetal BM milieu versus MM cells and the heterogeneity of implanted human bone chips are important restrains of this system. Here we report the development of a novel in vivo model of human MM (SCID-synth-hu), which is based on the implant of a three-dimensional (3-D) poly-ε-caprolactone polymeric scaffold (PCLS) into SCID mice as recipient to allow growth of MM cells in a reconstituted HuBMM. This biosynthetic scaffold has been designed to resemble the micro-architecture of a normal human adult bone and was characterized by 3-D interconnected large and small pores suitable for engraftment of bone marrow-derived cells. Human bone marrow stromal cells (BMSCs) were collected from BM aspirates from MM patients and firstly used for coating 3D internal surface of PCLSs. We performed in vitro dynamic seeding of BMSCs into PCLSs using a suspension of 106 cells in 500 μl of growth medium. Before implantation, PCLSs were incubated in complete medium at 37°C, in 5% CO2 for 24 hours, in order to allow cell adhesion on 3D surfaces. Then, PCLSs were implanted subcutaneously into SCID mice. CD138+ immune-selected primary MM cells, obtained by MM patient with a different disease status, were directly injected into PCLSs, which have been previously coated with allogeneic BMSCs 2–3 weeks after the in vivo implant. By this experimental approach, we achieved engraftment of primary MM cells in PCLSs within a non autologous bone marrow milieu. In a subsequent series of experiments, bone marrow mononuclear cells (BMMCs), obtained by Ficoll gradient separation and containing primary unselected CD138+ and their autologous BMSCs, were directly seeded in vitro into PCLSs which were implanted in SCID mice after 24 hours of incubation. At different time points, H&E and CD138 or κ/λ staining demonstrated engraftment and filling of 3-D spaces by primary MM cells within the autologous bone marrow milieu in PCLSs retrieved from SCID-synth-hu mice. Neo-synthesized extracellular matrix and angiogenesis were also shown by H&E and immune histochemical staining in retrieved PCLSs. Angiogenesis mostly occurred within areas of MM infiltration, suggesting its role in our system. In vivo MM growth was monitored by ELISA measuring of human monotypic immunoglobulins (Igs) in mouse sera 4 to 10 weeks after cell injection. To demonstrate the usefulness of our SCID-synth-hu model as an experimental platform for in vivo testing of investigational drugs, mice bearing human MM implants were treated intraperitoneally with bortezomib plus dexamethasone (Bort+Dex). As expected, SCID-synth-hu mice treated with Bort+Dex exhibited a significant decrease of monotypic light chains in mice sera and induction of apoptosis of MM cells in retrieved PCLSs, as compared to untreated control mice. Our experimental findings demonstrate that the SCID-synth-hu is the first experimental system which allows the in vivo expansion of human primary MM cells within their autologous adult HuBMM. The unlimited availability and the low cost of PCLSs, as well as the potential for dissecting the biological events within the HuBMM, represent a clear improvement over the available preclinical in vivo models of MM. We conclude that the SCID-synth-hu is a unique tool for large scale in vivo preclinical screening of novel agents targeting MM in its autologous HuBMM, and a novel resource for translational research in the experimental treatment of this still incurable disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 754-765 ◽  
Author(s):  
Mitsuyoshi Urashima ◽  
Benjamin P. Chen ◽  
Shirley Chen ◽  
Geraldine S. Pinkus ◽  
Roderick T. Bronson ◽  
...  

Abstract Prior in vitro studies have suggested a role of adhesion molecules, bone marrow stromal cells (BMSCs), and cytokines in the regulation of human multiple myeloma (MM) cell growth and survival. Although in vivo models have been developed in severe combined immunodeficient (SCID) mice that support the growth of human MM within the murine BM microenvironment, these xenograft models do not permit a study of the role of adhesion proteins in human MM cell-human BMSC interactions. We therefore established an in vivo model of human MM using SCID mice implanted with bilateral human fetal bone grafts (SCID-hu mice). For the initial tumor innoculum, human MM derived cell lines (1 × 104 or 5 × 104 ARH-77, OCI-My5, U-266, or RPMI-8226 cells) were injected directly into the BM cavity of the left bone implants in irradiated SCID-hu mice. MM cells engrafted and proliferated in the left human fetal bone implants within SCID-hu mice as early as 4 weeks after injection of as few as 1 × 104 MM cells. To determine whether homing of tumor cells occurred, animals were observed for up to 12 weeks after injection and killed to examine for tumor in the right bone implants. Of great interest, metastases to the right bone implants were observed at 12 weeks after the injection of 5 × 104 MM cells, without spread of human MM cells to murine BM. Human MM cells were identified on the basis of characteristic histology and monoclonal human Ig. Importantly, monoclonal human Ig and human interleukin-6 (IL-6), but not human IL-1β or tumor necrosis factor-α, were detectable in sera of SCID-hu mice injected with MM cells. In addition, specific monoclonal Ig light chain deposition was evident within renal tubules. This in vivo model of human MM provides for the first time a means for identifying adhesion molecules that are responsible for specific homing of human MM cells to the human, as opposed to murine, BM microenvironment. Moreover, induction of human IL-6 suggests the possibility that regulation of MM cell growth by this cytokine might also be investigated using this in vivo model.


Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3688-3696 ◽  
Author(s):  
Pierfrancesco Tassone ◽  
Victor S. Goldmacher ◽  
Paola Neri ◽  
Antonella Gozzini ◽  
Masood A. Shammas ◽  
...  

We tested the in vitro and in vivo antitumor activity of the maytansinoid DM1 (N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine), a potent antimicrotubule agent, covalently linked to the murine monoclonal antibody (mAb) B-B4 targeting syndecan-1 (CD138). We evaluated the in vitro activity of B-B4–DM1 against a panel of CD138+ and CD138- cell lines, as well as CD138+ patient multiple myeloma (MM) cells. Treatment with B-B4–DM1 selectively decreased growth and survival of MM cell lines, patient MM cells, and MM cells adherent to bone marrow stromal cells. We further examined the activity of B-B4–DM1 in 3 human MM models in mice: (1) severe combined immunodeficient (SCID) mice bearing subcutaneous xenografts; (2) SCID mice bearing green fluorescent protein–positive (GFP+) xenografts; and (3) SCID mice implanted with human fetal bone (SCID-hu) and subsequently injected with patient MM cells. Tumor regression and inhibition of tumor growth, improvement in overall survival, and reduction in levels of circulating human paraprotein were observed in mice treated with B-B4–DM1. Although immunohistochemical analysis demonstrates restricted CD138 expression in human tissues, the lack of B-B4 reactivity with mouse tissues precludes evaluation of its toxicity in these models. In conclusion, B-B4–DM1 is a potent anti-MM agent that kills cells in an antigen-dependent manner in vitro and mediates in vivo antitumor activity at doses that are well tolerated, providing the rationale for clinical trials of this immunoconjugate in MM.


Blood ◽  
2001 ◽  
Vol 97 (6) ◽  
pp. 1635-1643 ◽  
Author(s):  
Lia E. Perez ◽  
Henry M. Rinder ◽  
Chao Wang ◽  
Jayne B. Tracey ◽  
Noel Maun ◽  
...  

The study of megakaryocytopoiesis has been based largely on in vitro assays. We characterize an in vivo model of megakaryocyte and platelet development in which human peripheral blood stem cells (PBSCs) differentiate along megakaryocytic as well as myeloid/lymphoid lineages in sublethally irradiated nonobese diabetic/severe combined immunodeficient (NOD-SCID) mice. Human hematopoiesis preferentially occurs in the bone marrow of the murine recipients, and engraftment is independent of exogenous cytokines. Human colony-forming units–megakaryocyte (CFU-MK) develop predominantly in the bone marrow, and their presence correlates with the overall degree of human cell engraftment. Using a sensitive and specific flow cytometric assay, human platelets are detected in the peripheral blood from weeks 1 to 8 after transplantation. The number of circulating human platelets peaks at week 3 with a mean of 20 × 109/L. These human platelets are functional as assessed by CD62P expression in response to thrombin stimulation in vitro. Exogenous cytokines have a detrimental effect on CFU-MK production after 2 weeks, and animals treated with these cytokines have no circulating platelets 8 weeks after transplantation. Although cytokine stimulation of human PBSCs ex vivo led to a significant increase in CFU-MK, CD34+/41+, and CD41+ cells, these ex vivo expanded cells provided only delayed and transient platelet production in vivo, and no CFU-MK developed in vivo after transplantation. In conclusion, xenogeneic transplantation of human PBSCs into NOD/SCID mice provides an excellent in vivo model to study human megakaryocytopoiesis and platelet production.


2021 ◽  
Vol 9 (3) ◽  
pp. e001803
Author(s):  
Louise M E Müller ◽  
Gemma Migneco ◽  
Gina B Scott ◽  
Jenny Down ◽  
Sancha King ◽  
...  

BackgroundMultiple myeloma (MM) remains an incurable disease and oncolytic viruses offer a well-tolerated addition to the therapeutic arsenal. Oncolytic reovirus has progressed to phase I clinical trials and its direct lytic potential has been extensively studied. However, to date, the role for reovirus-induced immunotherapy against MM, and the impact of the bone marrow (BM) niche, have not been reported.MethodsThis study used human peripheral blood mononuclear cells from healthy donors and in vitro co-culture of MM cells and BM stromal cells to recapitulate the resistant BM niche. Additionally, the 5TGM1-Kalw/RijHSD immunocompetent in vivo model was used to examine reovirus efficacy and characterize reovirus-induced immune responses in the BM and spleen following intravenous administration. Collectively, these in vitro and in vivo models were used to characterize the development of innate and adaptive antimyeloma immunity following reovirus treatment.ResultsUsing the 5TGM1-Kalw/RijHSD immunocompetent in vivo model we have demonstrated that reovirus reduces both MM tumor burden and myeloma-induced bone disease. Furthermore, detailed immune characterization revealed that reovirus: (i) increased natural killer (NK) cell and CD8+ T cell numbers; (ii) activated NK cells and CD8+ T cells and (iii) upregulated effector-memory CD8+ T cells. Moreover, increased effector-memory CD8+ T cells correlated with decreased tumor burden. Next, we explored the potential for reovirus-induced immunotherapy using human co-culture models to mimic the myeloma-supportive BM niche. MM cells co-cultured with BM stromal cells displayed resistance to reovirus-induced oncolysis and bystander cytokine-killing but remained susceptible to killing by reovirus-activated NK cells and MM-specific cytotoxic T lymphocytes.ConclusionThese data highlight the importance of reovirus-induced immunotherapy for targeting MM cells within the BM niche and suggest that combination with agents which boost antitumor immune responses should be a priority.


2010 ◽  
Vol 119 (11) ◽  
pp. 805-810 ◽  
Author(s):  
Satoshi Ohno ◽  
Shigeru Hirano ◽  
Ichiro Tateya ◽  
Shin-Ichi Kanemaru ◽  
Hiroo Umeda ◽  
...  

Objectives: Treatment of vocal fold scarring remains a therapeutic challenge. Our group previously reported the efficacy of treating injured vocal folds by implantation of bone marrow—derived stromal cells containing mesenchymal stem cells. Appropriate scaffolding is necessary for the stem cell implant to achieve optimal results. Terudermis is an atelocollagen sponge derived from calf dermis. It has large pores that permit cellular entry and is degraded in vivo. These characteristics suggest that this material may be a good candidate for use as scaffolding for implantation of cells. The present in vitro study investigated the feasibility of using Terudermis as such a scaffold. Methods: Bone marrow—derived stromal cells were obtained from GFP (green fluorescent protein) mouse femurs. The cells were seeded into Terudermis and incubated for 5 days. Their survival, proliferation, and expression of extracellular matrix were examined. Results: Bone marrow—derived stromal cells adhered to Terudermis and underwent significant proliferation. Immunohistochemical examination demonstrated that adherent cells were positive for expression of vimentin, desmin, fibronectin, and fsp1 and negative for beta III tubulin. These findings indicate that these cells were mesodermal cells and attached to the atelocollagen fibers biologically. Conclusions: The data suggest that Terudermis may have potential as stem cell implantation scaffolding for the treatment of scarred vocal folds.


Sign in / Sign up

Export Citation Format

Share Document