scholarly journals CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin αIIbβ3 in platelets

Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1696-1703 ◽  
Author(s):  
Stephen M. Cifuni ◽  
Denisa D. Wagner ◽  
Wolfgang Bergmeier

AbstractSecond messenger-mediated inside-out activation of integrin αIIbβ3 is a key step in platelet aggregation. We recently showed strongly impaired but not absent αIIbβ3-mediated aggregation of CalDAG-GEFI–deficient platelets activated with various agonists. Here we further evaluated the roles of CalDAG-GEFI and protein kinase C (PKC) for αIIbβ3 activation in platelets activated with a PAR4 receptor–specific agonist, GYPGKF (PAR4p). Compared with wild-type controls, platelets treated with the PKC inhibitor Ro31-8220 or CalDAG-GEFI–deficient platelets showed a marked defect in aggregation at low (< 1mM PAR4p) but not high PAR4p concentrations. Blocking of PKC function in CalDAG-GEFI–deficient platelets, how-ever, strongly decreased aggregation at all PAR4p concentrations, demonstrating that CalDAG-GEFI and PKC represent separate, but synergizing, pathways important for αIIbβ3 activation. PAR4p-induced aggregation in the absence of CalDAG-GEFI required cosignaling through the Gαi-coupled receptor for ADP, P2Y12. Independent roles for CalDAG-GEFI and PKC/Gαi signaling were also observed for PAR4p-induced activation of the small GTPase Rap1, with CalDAG-GEFI mediating the rapid but reversible activation of this small GTPase. In summary, our study identifies CalDAG-GEFI and PKC as independent pathways leading to Rap1 and αIIbβ3 activation in mouse platelets activated through the PAR4 receptor.

Blood ◽  
2009 ◽  
Vol 113 (11) ◽  
pp. 2557-2567 ◽  
Author(s):  
Bela Nagy ◽  
Kamala Bhavaraju ◽  
Todd Getz ◽  
Yamini S. Bynagari ◽  
Soochong Kim ◽  
...  

Protein kinase C (PKC) isoforms have been implicated in several platelet functional responses, but the contribution of individual isoforms has not been thoroughly evaluated. Novel PKC isoform PKC-θ is activated by glycoprotein VI (GPVI) and protease-activated receptor (PAR) agonists, but not by adenosine diphosphate. In human platelets, PKC-θ–selective antagonistic (RACK; receptor for activated C kinase) peptide significantly inhibited GPVI and PAR-induced aggregation, dense and α-granule secretion at low agonist concentrations. Consistently, in murine platelets lacking PKC-θ, platelet aggregation and secretion were also impaired. PKC-mediated phosphorylation of tSNARE protein syntaxin-4 was strongly reduced in human platelets pretreated with PKC-θ RACK peptide, which may contribute to the lower levels of granule secretion when PKC-θ function is lost. Furthermore, the level of JON/A binding to activated αIIbβ3 receptor was also significantly decreased in PKC-θ−/− mice compared with wild-type littermates. PKC-θ−/− murine platelets showed significantly lower agonist-induced thromboxane A2 (TXA2) release through reduced extracellular signal–regulated kinase phosphorylation. Finally, PKC-θ−/− mice displayed unstable thrombus formation and prolonged arterial occlusion in the FeCl3 in vivo thrombosis model compared with wild-type mice. In conclusion, PKC-θ isoform plays a significant role in platelet functional responses downstream of PAR and GPVI receptors.


1997 ◽  
Vol 273 (6) ◽  
pp. C1981-C1986 ◽  
Author(s):  
Xian-Jun Cheng ◽  
Jan-Olov Höög ◽  
Angus C. Nairn ◽  
Paul Greengard ◽  
Anita Aperia

We have previously shown that the rat Na+-K+-ATPase α1-isoform is phosphorylated at Ser-943 by protein kinase A (PKA) and at Ser-23 by protein kinase C (PKC), which in both cases results in inhibition of enzyme activity. We now present evidence that suggests that the phosphorylation of Ser-943 by PKA modulates the response of Na+-K+-ATPase to PKC. Rat Na+-K+-ATPase α1 or a mutant in which Ser-943 was changed to Ala-943 was stably expressed in COS cells. The inhibition of enzyme activity measured in response to treatment with the phorbol ester, phorbol 12,13-dibutyrate (PDBu; 10−6 M), was significantly reduced in the cells expressing the Ala-943 mutant compared with that observed in cells expressing wild-type enzyme. In contrast, for cells expressing Na+-K+-ATPase α1 in which Ser-943 was mutated to Asp-943, the effect of PDBu was slightly enhanced. The PDBu-induced inhibition was not mediated by activation of the adenosine 3′,5′-cyclic monophosphate/PKA system and was not achieved via direct phosphorylation of Ser-943. Sp-5,6-DCl-cBIMPS, a specific PKA activator, increased the phosphorylation of Ser-943, and this was associated with an enhanced response to PDBu. Thus the effect of PKC on rat Na+-K+-ATPase α1 is determined not only by the activity of PKC but also by the state of phosphorylation of Ser-943.


2006 ◽  
Vol 17 (2) ◽  
pp. 799-813 ◽  
Author(s):  
Keylon L. Cheeseman ◽  
Takehiko Ueyama ◽  
Tanya M. Michaud ◽  
Kaori Kashiwagi ◽  
Demin Wang ◽  
...  

Protein kinase C-ϵ (PKC-ϵ) translocates to phagosomes and promotes uptake of IgG-opsonized targets. To identify the regions responsible for this concentration, green fluorescent protein (GFP)-protein kinase C-ϵ mutants were tracked during phagocytosis and in response to exogenous lipids. Deletion of the diacylglycerol (DAG)-binding ϵC1 and ϵC1B domains, or the ϵC1B point mutant ϵC259G, decreased accumulation at phagosomes and membrane translocation in response to exogenous DAG. Quantitation of GFP revealed that ϵC259G, ϵC1, and ϵC1B accumulation at phagosomes was significantly less than that of intact PKC-ϵ. Also, the DAG antagonist 1-hexadecyl-2-acetyl glycerol (EI-150) blocked PKC-ϵ translocation. Thus, DAG binding to ϵC1B is necessary for PKC-ϵ translocation. The role of phospholipase D (PLD), phosphatidylinositol-specific phospholipase C (PI-PLC)-γ1, and PI-PLC-γ2 in PKC-ϵ accumulation was assessed. Although GFP-PLD2 localized to phagosomes and enhanced phagocytosis, PLD inhibition did not alter target ingestion or PKC-ϵ localization. In contrast, the PI-PLC inhibitor U73122 decreased both phagocytosis and PKC-ϵ accumulation. Although expression of PI-PLC-γ2 is higher than that of PI-PLC-γ1, PI-PLC-γ1 but not PI-PLC-γ2 consistently concentrated at phagosomes. Macrophages from PI-PLC-γ2-/-mice were similar to wild-type macrophages in their rate and extent of phagocytosis, their accumulation of PKC-ϵ at the phagosome, and their sensitivity to U73122. This implicates PI-PLC-γ1 as the enzyme that supports PKC-ϵ localization and phagocytosis. That PI-PLC-γ1 was transiently tyrosine phosphorylated in nascent phagosomes is consistent with this conclusion. Together, these results support a model in which PI-PLC-γ1 provides DAG that binds to ϵC1B, facilitating PKC-ϵ localization to phagosomes for efficient IgG-mediated phagocytosis.


2009 ◽  
Vol 117 (8) ◽  
pp. 305-312 ◽  
Author(s):  
Rosa Aras-López ◽  
Fabiano E. Xavier ◽  
Mercedes Ferrer ◽  
Gloria Balfagón

Neuronal NO plays a functional role in many vascular tissues, including MAs (mesenteric arteries). Glucocorticoids alter NO release from endothelium and the CNS (central nervous system), but no results from peripheral innervation have been reported. In the present study we investigated the effects of dexamethasone on EFS (electrical field stimulation)-induced NO release in MAs from WKY (Wistar–Kyoto) rats and SHRs (spontaneously hypertensive rats) and the role of PKC (protein kinase C) in this response. In endothelium-denuded MAs, L-NAME (NG-nitro-L-arginine methyl ester) increased the contractile response to EFS only in segments from SHRs. EFS-induced contraction was reduced by 1 μmol/l dexamethasone in segments from SHRs, but not WKY rats, and this effect was abolished in the presence of dexamethasone. EFS induced a tetrodotoxin-resistant NO release in WKY rat MAs, which remained unchanged by 1 μmol/l dexamethasone. In SHR MAs, dexamethasone decreased basal and EFS-induced neuronal NO release, and this decrease was prevented by the glucocorticoid receptor antagonist mifepristone. Dexamethasone did not affect nNOS [neuronal NOS (NO synthase)] expression in either strain. In SHR MAs, incubation with calphostin C (a non-selective PKC inhibitor), Gö6983 (a classic PKC δ and ζ inhibitor), LY379196 (a PKCβ inhibitor) or PKCζ-PI (PKCζ pseudosubstrate inhibitor) decreased both basal and EFS-induced neuronal NO release. Additionally, PKC activity was reduced by dexamethasone. The PKC inhibitor-induced reduction in NO release was unaffected by dexamethasone. In conclusion, results obtained in the present study indicate that PKC activity positively modulates the neuronal NO release in MAs from SHRs. They also reveal that by PKC inhibition, through activation of glucocorticoid receptors, dexamethasone reduces neuronal NO release in these arteries.


1992 ◽  
Vol 119 (6) ◽  
pp. 1515-1521 ◽  
Author(s):  
D Sugden ◽  
S J Rowe

The pineal hormone, melatonin (5-methoxy N-acetyltryptamine) induces a rapid aggregation of melanin-containing pigment granules in isolated melanophores of Xenopus laevis. Treatment of melanophores with activators of protein kinase C (PKC), including phorbol esters, mezerein and a synthetic diacylglycerol, did not affect pigment granule distribution but did prevent and reverse melatonin-induced pigment aggregation. This effect was blocked by an inhibitor of PKC, Ro 31-8220. The inhibitory effect was not a direct effect on melatonin receptors, per se, as the slow aggregation induced by a high concentration of an inhibitor of cyclic AMP-dependent protein kinase (PKA), adenosine 3',5'-cyclic monophosphothioate, Rp-diastereomer (Rp-cAMPS), was also reversed by PKC activation. Presumably activation of PKC, like PKA activation, stimulates the intracellular machinery involved in the centrifugal translocation of pigment granules along microtubules. alpha-Melanocyte stimulating hormone (alpha-MSH), like PKC activators, overcame melatonin-induced aggregation but this response was not blocked by the PKC inhibitor, Ro 31-8220. This data indicates that centrifugal translocation (dispersion) of pigment granules in Xenopus melanophores can be triggered by activation of either PKA, as occurs after alpha-MSH treatment, or PKC. The very slow aggregation in response to inhibition of PKA with high concentrations of Rp-cAMPS, suggests that the rapid aggregation in response to melatonin may involve multiple intracellular signals in addition to the documented Gi-mediated inhibition of adenylate cyclase.


2002 ◽  
Vol 368 (2) ◽  
pp. 535-543 ◽  
Author(s):  
Todd M. QUINTON ◽  
Soochong KIM ◽  
Carol DANGELMAIER ◽  
Robert T. DORSAM ◽  
Jianguo JIN ◽  
...  

Platelet fibrinogen receptor activation is a critical step in platelet plug formation. The fibrinogen receptor (integrin αIIbβ3) is activated by agonist-mediated Gq stimulation and resultant phospholipase C activation. We investigated the role of downstream signalling events from phospholipase C, namely the activation of protein kinase C (PKC) and rise in intracellular calcium, in agonist-induced fibrinogen receptor activation using Ro 31-8220 (a PKC inhibitor) or dimethyl BAPTA [5,5′-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid], a high-affinity calcium chelator. All the experiments were performed with human platelets treated with aspirin, to avoid positive feedback from thromboxane A2. In the presence of Ro 31-8220, platelet aggregation caused by U46619 was completely inhibited while no effect or partial inhibition was seen with ADP and the thrombin-receptor-activating peptide SFLLRN, respectively. In the presence of intracellular dimethyl BAPTA, ADP- and U46619-induced aggregation and anti-αIIbβ3 antibody PAC-1 binding were completely abolished. However, similar to the effects of Ro 31-8220, dimethyl BAPTA only partially inhibited SFLLRN-induced aggregation, and was accompanied by diminished dense-granule secretion. When either PKC activation or intracellular calcium release was abrogated, aggregation and fibrinogen receptor activation with U46619 or SFLLRN was partially restored by additional selective activation of the Gi signalling pathway. In contrast, when both PKC activity and intracellular calcium increase were simultaneously inhibited, the complete inhibition of aggregation that occurred in response to either U46619 or SFLLRN could not be restored with concomitant Gi signalling. We conclude that, while the PKC- and calcium-regulated signalling pathways are capable of inducing activating fibrinogen receptor independently and that each can synergize with Gi signalling to cause irreversible fibrinogen receptor activation, both pathways act synergistically to effect irreversible fibrinogen receptor activation.


Sign in / Sign up

Export Citation Format

Share Document