scholarly journals PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model

Blood ◽  
2009 ◽  
Vol 114 (8) ◽  
pp. 1545-1552 ◽  
Author(s):  
Long Zhang ◽  
Thomas F. Gajewski ◽  
Justin Kline

Abstract Negative regulatory mechanisms within the solid tumor microenvironment inhibit antitumor T-cell function, leading to evasion from immune attack. One inhibitory mechanism is up-regulation of programmed death-ligand 1 (PD-L1) expressed on tumor or stromal cells which binds to programmed death-1 (PD-1) on activated T cells. PD-1/PD-L1 engagement results in diminished antitumor T-cell responses and correlates with poor outcome in murine and human solid cancers. In contrast to available data in solid tumors, little is known regarding involvement of the PD-1/PD-L1 pathway in immune escape by hematopoietic cancers, such as acute myeloid leukemia (AML). To investigate this hypothesis, we used the murine leukemia, C1498. When transferred intravenously, C1498 cells grew progressively and apparently evaded immune destruction. Low levels of PD-L1 expression were found on C1498 cells grown in vitro. However, PD-L1 expression was up-regulated on C1498 cells when grown in vivo. PD-1−/− mice challenged with C1498 cells generated augmented antitumor T-cell responses, showed decreased AML burden in the blood and other organs, and survived significantly longer than did wild-type mice. Similar results were obtained with a PD-L1 blocking antibody. These data suggest the importance of the PD-1/PD-L1 pathway in immune evasion by a hematologic malignancy, providing a rationale for clinical trials targeting this pathway in leukemia patients.

Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2764-2771 ◽  
Author(s):  
Beth D. Harrison ◽  
Julie A. Adams ◽  
Mark Briggs ◽  
Michelle L. Brereton ◽  
John A. Liu Yin

Abstract Effective presentation of tumor antigens is fundamental to strategies aimed at enrolling the immune system in eradication of residual disease after conventional treatments. Myeloid malignancies provide a unique opportunity to derive dendritic cells (DCs), functioning antigen-presenting cells, from the malignant cells themselves. These may then co-express leukemic antigens together with appropriate secondary signals and be used to generate a specific, antileukemic immune response. In this study, blasts from 40 patients with acute myeloid leukemia (AML) were cultured with combinations of granulocyte-macrophage colony-stimulating factor, interleukin 4, and tumor necrosis factor α, and development to DCs was assessed. After culture, cells from 24 samples exhibited morphological and immunophenotypic features of DCs, including expression of major histocompatibility complex class II, CD1a, CD83, and CD86, and were potent stimulators in an allogeneic mixed lymphocyte reaction (MLR). Stimulation of autologous T-cell responses was assessed by the proliferative response of autologous T cells to the leukemic DCs and by demonstration of the induction of specific, autologous, antileukemic cytotoxicity. Of 17 samples, 11 were effective stimulators in the autologous MLR, and low, but consistent, autologous, antileukemic cytotoxicity was induced in 8 of 11 cases (mean, 27%; range, 17%-37%). This study indicates that cells with enhanced antigen-presenting ability can be generated from AML blasts, that these cells can effectively prime autologous cytotoxic T cells in vitro, and that they may be used as potential vaccines in the immunotherapy of AML.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 414-414
Author(s):  
Jochen Greiner ◽  
Michael Schmitt ◽  
Li Li ◽  
Krzysztof Giannopoulos ◽  
Katrin Bosch ◽  
...  

Abstract Several Tumor-associated antigens (TAAs) are expressed in acute myeloid leukemia (AML) and elicit specific immune responses of CD8 positive T cells. These specific T cell responses against leukemic blasts expressing TAAs might play a critical role in the control of minimal residual disease (MRD) in AML. Therefore, we investigated whether TAAs inducing specific immune responses in AML patients were associated with the clinical outcome. A DNA-microarray analysis of 116 AML samples was performed to correlate expression of TAAs to the clinical outcome. In these AML patients specific T cell responses to TAAs were assessed by ELISPOT analysis, tetramer staining and chromium release assays. Quantitative RT-PCR based validation of our results demonstrated the power of DNA microarray technology. We found a significant correlation of high mRNA expression of the TAA G250/CA9 with a longer overall survival (P=0.022), a trend for better outcome in patients with high expression levels of PRAME (P=0.103), and a hint for RHAMM/HMMR. In contrast, for other TAAs like WT1, TERT, PRTN3, BCL2, and LAMR1 we found no correlation with clinical outcome of AML patients. Moreover, co-expression of RHAMM/HMMR, PRAME and G250/CA9 provided a favorable prognostic effect (P=0.005). We found specific T cell responses at high frequency for these three antigens in AML patients. Positive immune reactions were detected in 8/17 (47%) AML patients for RHAMM/HMMR-R3-derived, in 7/10 (70%) for PRAME-P3-derived, and in 6/10 (60%) for newly characterized G250/CA9-G2-derived peptides. We detected a significant increased immune response of AML patients in complete remission compared to AML patients with refractory disease (P<0.001). Furthermore, we could demonstrate specific lysis of T2 cells and AML blasts presenting these epitope peptides RHAMM/HMMR-R3, PRAME-P3 and G250/CA9-G2. In conclusion, the expression of the TAAs RHAMM/HMMR, PRAME and G250/CA9 can induce strong anti-leukemic immune responses of CD8 positive T cells possibly enabling the control of MRD in AML patients. Thus, the antigens RHAMM/HMMR, PRAME and G250/CA9 represent interesting target structures for polyvalent immunotherapeutic approaches in AML.


Blood ◽  
2010 ◽  
Vol 116 (2) ◽  
pp. 171-179 ◽  
Author(s):  
Peter G. Maslak ◽  
Tao Dao ◽  
Lee M. Krug ◽  
Suzanne Chanel ◽  
Tatyana Korontsvit ◽  
...  

Abstract A pilot study was undertaken to assess the safety, activity, and immunogenicity of a polyvalent Wilms tumor gene 1 (WT1) peptide vaccine in patients with acute myeloid leukemia in complete remission but with molecular evidence of WT1 transcript. Patients received 6 vaccinations with 4 WT1 peptides (200 μg each) plus immune adjuvants over 12 weeks. Immune responses were evaluated by delayed-type hypersensitivity, CD4+ T-cell proliferation, CD3+ T-cell interferon-γ release, and WT1 peptide tetramer staining. Of the 9 evaluable patients, 7 completed 6 vaccinations and WT1-specific T-cell responses were noted in 7 of 8 patients. Three patients who were HLA-A0201-positive showed significant increase in interferon-γ–secreting cells and frequency of WT1 tetramer-positive CD8+ T cells. Three patients developed a delayed hypersensitivity reaction after vaccination. Definite related toxicities were minimal. With a mean follow-up of 30 plus or minus 8 months after diagnosis, median disease-free survival has not been reached. These preliminary data suggest that this polyvalent WT1 peptide vaccine can be administered safely to patients with a resulting immune response. Further studies are needed to establish the role of vaccination as viable postremission therapy for acute myeloid leukemia. This study was registered at www.clinicaltrials.gov as #NCT00398138.


Blood ◽  
2012 ◽  
Vol 120 (6) ◽  
pp. 1282-1289 ◽  
Author(s):  
Jochen Greiner ◽  
Yoko Ono ◽  
Susanne Hofmann ◽  
Anita Schmitt ◽  
Elmar Mehring ◽  
...  

Abstract Mutations in the nucleophosmin gene (NPM1mut) are one of the most frequent molecular alterations in acute myeloid leukemia (AML), and immune responses may contribute to the favorable prognosis of AML patients with NPM1mut. In the present study, we were able to demonstrate both CD4+ and CD8+ T-cell responses against NPM1mut. Ten peptides derived from wild-type NPM1 and NPM1mut were subjected to ELISPOT analysis in 33 healthy volunteers and 27 AML patients. Tetramer assays against the most interesting epitopes were performed and Cr51-release assays were used to show the cytotoxicity of peptide-specific T cells. Moreover, HLA-DR–binding epitopes were used to test the role of CD4+ T cells in NPM1 immunogenicity. Two epitopes (epitopes #1 and #3) derived from NPM1mut induced CD8+ T-cell responses. A total of 33% of the NPM1mut AML patients showed immune responses against epitope #1 and 44% against epitope #3. Specific lysis of leukemic blasts was detected. To obtain robust immune responses against tumor cells, the activation of CD4+ T cells is crucial. Therefore, overlapping (OL) peptides were analyzed in ELISPOT assays and OL8 was able to activate both CD8+ and CD4+ T cells. The results of the present study show that NPM1mut induces specific T-cell responses of CD4+ and CD8+ T cells and therefore is a promising target for specific immunotherapies in AML.


2018 ◽  
Vol 7 (4) ◽  
pp. e1419114 ◽  
Author(s):  
Jennifer L. Hsu ◽  
Christian E. Bryant ◽  
Michael S. Papadimitrious ◽  
Benjamin Kong ◽  
Robin E. Gasiorowski ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1383-1383 ◽  
Author(s):  
Tongyuan Xue ◽  
Marissa Del Real ◽  
Emanuela Marcucci ◽  
Candida Toribio ◽  
Sonia Maryam Setayesh ◽  
...  

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The cure rate for primary AML patients is only 35% and decreases with age. Novel and effective immunotherapies for patients with relapsed and/or refractory (r/r) AML remain an urgent unmet need. CD33 is an attractive immunotherapeutic target for myeloid malignancies given its expression on more than 85% of AML patient samples. We therefore set out to design and test CD33 chimeric antigen receptor (CD33CAR) T cells preclinically as a single agent and in combinational therapy. To assess antileukemic responses of CD33CAR T cells in vitro and in vivo, we enriched CD4/CD8 T cells from peripheral blood mononuclear cells (PBMCs) and genetically modified them to express a second-generation CD33CAR. CD33CAR T cells exhibited potent antigen dependent CD107a degranulation, IFN-γ production and killing activities against AML cells in vitro. Using a NOD-SCID-IL2Rgnull (NSG) xenograft model engrafted with MOLM-14-ffluc, a CD33 expressing AML cell line transduced with lentivirus carrying firefly luciferase (ffluc) and enhanced green fluorescent protein (eGFP), 3 million CD33CAR or mock T cells were introduced intravenously. CD33 CAR T cell-treated group displayed 98.2% leukemic regression 4 days post CAR T infusion, and 99.6% reduction on day 31. Bioluminescent imaging (BLI) and Kaplan-Meier analysis demonstrated that CD33CAR T cells significantly decreased leukemic burden and prolonged overall survival compared to mock T cells in vivo. Decitabine, a DNA hypomethylating agent (HMA), is a main therapeutic agent for treating AML. We observed HMA treatment led to increased CD33 expression on MOLM-14 cells in vitro. We hypothesized that decitabine can potentiate CD33CAR T cell-mediated AML killing by increasing CD33 expression. MOLM-14 cells were treated with either decitabine alone, CD33CAR T cells alone, or sequential treatment using various concentrations of decitabine or DMSO followed by CD33CAR or mock T cells in an E:T ratio of 1:100. We determined the target specific killing activities in each group using flow cytometric based analysis 48 and 96 hours later. The decitabine followed by CD33CAR T cells treatment reproducibly resulted in the most robust antileukemic activity with 80.6% MOLM-14 cells killed. In comparison, CD33CAR T cells or decitabine monotherapy resulted in 11.5% and 50.9% killing, respectively. In vivo testing of the combinational effects of decitabine and CD33CAR T cells are underway and will be updated at the meeting. Finally, checkpoint blockade targeting programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) has shown survival benefits, particularly in combination with HMA, for patients with r/r AML (Daver et al. 2019). We observed elevated PD-L1 expression on residual AML blasts that survived the treatment with decitabine in combination with CD33CAR T cells. Therefore, we hypothesized that blockade of PD-1/PD-L1 interaction might further improve the antileukemic effect of CD33CAR T cells against AML cells post antigen induction by decitabine. MOLM-14 cells were treated with decitabine for 2 days and CD33CAR T cells were added in an E:T ratio of 1:75. Anti-PD-1 or IgG4 antibody was added to the culture at various concentrations. The most robust CD33 specific killing was seen in the culture with anti-PD-1 antibody added. Further characterization are underway and will be presented. Taken together, our preclinical findings have demonstrated the potency of the CD33CAR T cell therapy and ways to optimize its efficacy. Our results support clinical translation of CD33CAR T cells for patients with AML. Disclosures Budde: F. Hoffmann-La Roche Ltd: Consultancy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1173-1173
Author(s):  
Shanshan Suo ◽  
Le Xuan Truong Nguyen ◽  
Fenglin Li ◽  
Dandan Zhao ◽  
Junjing Qiao ◽  
...  

Abstract Acute myeloid leukemia (AML) is a devastating hematopoietic malignancy. With current therapies, only approximately 30% of patients achieve long-term survival. Therefore, novel, more active and less toxic treatments are urgently needed. Programmed death-1 (PD-1) is a cell surface receptor that functions as a T cell checkpoint and plays a central role in regulating T cell exhaustion. Binding of PD-1 to its ligand, programmed death-ligand 1 (PD-L1), activates downstream signaling pathways and inhibits T cell activation. Abnormally high PD-L1 expression on tumor cells and antigen-presenting cells in the tumor microenvironment mediates tumor immune escape, and PD-1/PD-L1 immune checkpoint blockade has showed promising results in cancer patients. Recently, PD-1 expressed on melanoma cells was also shown to play a pivotal role in tumor growth. To date, in AML, the function of PD-1 has been mainly studied in the host T cells, while little is known regarding the role of PD-1 in AML cells. Herein, we examined the level and role of PD-1 in AML cells using AML murine model and patient samples. We used MLL PTD/WT/Flt3 ITD/ITD knock-in mouse in B6 background, a well characterized AML model, to study the expression and function of PD-1 in AML. Flow cytometric analysis of LSK (Lin -Sca-l1 +c-kit +) cells from the bone marrow (BM) of wild-type (WT, n=5) and AML (n=10) mice showed that 20.9%-61.9% of AML LSKs versus (vs) <5.0% of normal LSKs are PD-1 positive (P< 0.0001). Western blot and Q-RT-PCR analysis confirmed higher levels of PD-1 in AML LSKs than in normal LSKs. The PD-1 levels on LSKs increased over time and associated with disease progression. Similar results were obtained in AML patients, showing PD-1 + in 0.2%-14.6% of AML CD34 + cells vs < 1.0% of normal CD34 + cells (P< 0.05). Data analysis based on TCGA showed that higher PD-1 levels are associated with shorter survival in AML patients (P=0.0125). To assess the functional role of PD-1 in AML, we sorted PD-1 + and PD-1 - fractions fromAML LSKs and observed a lower frequency of quiescent cells (G0, 16.60% vs 44.87%, P< 0.05) and a higher cell growth rate in the PD-1 + vs PD-1 - cells. Further in vivo study showed that PD-1 + AML LSKs (CD45.2) generated higher white blood cell (WBC) counts (P< 0.0001), higher AML engraftment (P< 0.0001) and a shorter survival (median survival 57.5 vs >75 days, P< 0.001) in recipient mice (CD45.1) compared with PD-1 - AML LSKs. Similar results were observed in human samples. Compared to PD-1 - CD34 + cells, PD-1 + CD34 + cells are less quiescent and more proliferative (P< 0.01). PD-1 + AML blasts had higher engraftment rate (13.18% vs 2.68%, p=0.0002) and shorter survival (median survival: 27 vs 45 days, P= 0.0008) in NSGS mice than PD-1 - AML blasts. To evaluate if these in vivo differences observed in PD-1 + vs PD-1 - AML LSKs were mediated by interactions between PD-1 + AML and T cells, PD-1 + and PD-1 -LSKs from AML mouse were transplanted into T-, B- cell-deficient NSG mice. Recipient mice transplanted with PD-1 + AML LSKs had higher WBC counts (P< 0.01), higher AML engraftment (P< 0.0001) and a shorter survival (median survival: 76 vs >130 days, P< 0.0001) than recipients with PD-1 - AML LSKs, suggesting that these differences were T cell-independent. Next, we examined whether blocking PD-1 could affect leukemic cell growth. We sorted LSK cells from AML mice and performed colony forming cell (CFC) assay in the presence of anti-PD1 antibody or isotype antibody. Blocking PD-1 with anti-PD-1 antibody significantly suppressed CFC and cell growth in vitro but did not induce apoptosis compared to isotype control antibody. To explore the molecular mechanism by which PD-1 contributes to AML growth, we then sorted PD-1 + and PD-1 - LSKs from AML mice for molecular studies. Western blot assays revealed higher levels of SHP-2 and phosphorylated (p) -ERK in PD-1 + vs PD-1 - AML LSKs. We validated these results in primary human AML cells by immunofluorescence staining. Confocal microscopy of PD-1 + and PD-1 - human AML CD34 +cells demonstrated that PD-1 localized at the cell membrane and in the cytoplasm and p-ERK was markedly enhanced in the PD-1 + CD34 + cells. In conclusion, we showed here that a subpopulation of murine and human AML blasts expresses high levels of PD-1 which mediated disease initiation and growth through activation of the MAPK/ERK signaling pathways. PD-1 blocking antibody reversed these activities and might contribute to the clinical efficacy of anti-PD-1 therapy in AML. Disclosures Marcucci: Novartis: Other: Speaker and advisory scientific board meetings; Agios: Other: Speaker and advisory scientific board meetings; Abbvie: Other: Speaker and advisory scientific board meetings.


Sign in / Sign up

Export Citation Format

Share Document