scholarly journals Toll-like receptor 9 signaling by CpG-B oligodeoxynucleotides induces an apoptotic pathway in human chronic lymphocytic leukemia B cells

Blood ◽  
2010 ◽  
Vol 115 (24) ◽  
pp. 5041-5052 ◽  
Author(s):  
Xueqing Liang ◽  
E. Ashley Moseman ◽  
Michael A. Farrar ◽  
Veronika Bachanova ◽  
Daniel J. Weisdorf ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is the most prevalent human leukemia and is characterized by the progressive accumulation of long-lived malignant B cells. Here we show that human B-CLL cells selectively express high levels of Toll-like receptor 9 (TLR9) mRNA and proteins. Treating B-CLL cells with TLR9 agonists, type B CpG oligodeoxynucleotides (CpG-B ODNs), induces significant morphologic and phenotypic activation, altered cytokine production, reversal of signal transducer, and activator of transcription 1 (STAT1) phosphorylation state, followed by profound apoptosis of B-CLL cells that is CpG-B ODN treatment time- and dose-dependent. TLR9-CpG ODN ligation-induced apoptosis of B-CLL cells is confirmed by viable cell counts, annexin V/propidium iodide and tetramethyl-rhodamine ethylester staining, Western blots of the activation, and cleaved caspases and poly (ADP-ribose) polymerase. Triggering TLR9 by CpG-B ODN leads to nuclear factor-κB-dependent production of autocrine interleukin-10, which activates JAK/STAT pathway-dependent tyrosine phosphorylation of STAT1 proteins and thereby provokes an apoptosis pathway in B-CLL cells. Treating B-CLL cells in vitro or in vivo with CpG-B ODN reduces the number of leukemia cells that engraft in NOD-scid mice. These findings provide new understanding of CpG ODN-mediated antitumor effects and support for the development of TLR9-targeted therapy for human CLL.

Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1470-1474 ◽  
Author(s):  
DE Hammerschmidt ◽  
C Jeanneret ◽  
M Husak ◽  
M Lobell ◽  
HS Jacob

Abstract A nonanemic chronic lymphocytic leukemia patient with nearly 500,000 lymphocytes/microL underwent leukapheresis when she presented with CNS symptoms and retinal vascular engorgement. Respiratory distress developed during the cell separator run, which led us to ask whether the procedure could have changed the adhesive properties of her cells. C5a desarginine, N-f-Met-Leu-Phe, adenosine diphosphate, and collagen all failed to aggregate her lymphocytes in vitro, but arachidonic acid, excess free calcium, and 4 mumol/L epinephrine did aggregate the cells. Arachidonate-induced aggregation appeared to be a toxic phenomenon: the ED50 for aggregation was statistically indistinguishable from that for cytotoxicity, and aspirin only mildly blunted the response. In contrast, epinephrine-induced aggregation was not associated with lactic dehydrogenase release or the loss of trypan blue exclusion and was blunted by propranolol; radiopindolol-binding studies confirmed the presence of a beta-adrenergic receptor. There were approximately 3,000 receptors/cell, with no statistically significant difference between normal and chronic lymphocytic leukemia B cells or between B cells and T cells (separated by rosetting techniques). The Kd for the B cells' receptor, however, was less than that for T cells by a factor of ten (P less than .01). We conclude that B cells may aggregate when stimulated and that they--like T cells--have beta-adrenergic receptors. Adrenergically mediated changes in B cell adhesiveness may play a role in regulating lymphocyte traffic; in the rare patient with truly enormous B cell counts, we postulate that they may be an occasional cause of morbidity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 27-27
Author(s):  
Nina Reinart ◽  
Malgorzata Ciesla ◽  
Cornelia Rudolph ◽  
Astrid Stein ◽  
Guenter Krause ◽  
...  

Abstract Introduction: Tumor formation results from a complex interplay between genetic/epigenetic alterations, cell cycle dysregulation and promotion by the tumor environment. Stimulation by extracellular survival factors is important for chronic lymphocytic leukemia (CLL), since the leukemic cells undergo spontaneous apoptosis when removed from their normal milieu. Since preliminary experiments demonstrated that macrophage migration inhibitory factor (MIF), a chemokine-like proinflammatory mediator and an intracellular regulator of growth and apoptosis, is overexpressed in human CLL, we investigated whether MIF participates in the pathogenesis of murine CLL. Methods: We studied the role of MIF in CLL by crossing the Eμ-TCL1-transgenic mouse model with MIF knockout (MIF−/−) mice. B-cell-specific overexpression of T cell leukemia-1 (TCL1) leads to accumulation and proliferation of IgM+/CD5+ mature B-cells via activation of AKT. This results in a CLL-like disease with peripheral lymphocytic leukemia, lymphadenopathy, splenomegaly, BM infiltration and premature death after 8–15 months. TCL1+/wtMIF−/− and TCL1+/wtMIF+/+ mice were compared with respect to leukemia development, tumor burden, cytogenetics and survival. Results: The MIF receptors CD74/CD44 and CXCR2 are expressed on murine B-cells. TCL1+/wtMIF+/+ mice exhibited increased numbers of IgM+/CD5+ B-cells already in the preleukemic phase at month 3 and developed overt leukemia (WBC > 20G/l) 3 months earlier than their MIF−/− counterparts (p = 0.02). Leukemia load at 12 months of age as measured by hepatosplenomegaly was increased in TCL1+/wtMIF+/+ animals and lymphatic organs were densely infiltrated by small, mature lymphocytes. The accelerated disease progression in the presence of MIF translated into a median survival which was 60 days shorter than in the absence of MIF (TCL1+/wtMIF+/+ 400 days, TCL1+/wtMIF−/− 460 days, p = 0.04). SKY analysis in leukemic splenocytes yielded various complex genetic aberrations with trisomies (e.g. +15), tetraploidy, translocations and deletions. Overexpression of tp53 due to the presence of an inactivating mutation in the p53 gene was found more frequently in TCL1+/wtMIF+/+ than in TCL1+/wtMIF−/− animals. Although the rates of DNA-damage-induced apoptosis in pre-leukemic and leukemic mice ex vivo were not significantly different between the genotypes, this defect in the p53-dependent apoptosis pathway corresponded with a reduced rate of spontaneous apoptosis in spleens of leukemic TCL1+/wtMIF+/+ animals. Conclusions: Our experience with the Eμ-TCL-1-transgenic mice shows that this model is suitable for the identification of novel regulators of CLL-like disease. We provide genetic proof that MIF acts to promote the early preleukemic and the leukemic phase of TCL1-induced CLL and thereby identify MIF as a novel regulator of CLL pathogenesis. Ongoing efforts are focussing on further characterizing the differences in pathology, the activation of the AKT pathway and cell cycle control between TCL1+/wtMIF−/− and TCL1+/wtMIF+/+ mice.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 984-984
Author(s):  
Bing CUi ◽  
George F. Widhopf ◽  
Jian Yu ◽  
Daniel Martinez ◽  
Esther Avery ◽  
...  

Abstract Abstract 984 ROR1 is an orphan receptor tyrosine kinase that is expressed on leukemia cells of patients with chronic lymphocytic leukemia (CLL), but not on most adult tissues of healthy adults, including CD5+ B cells. To generate anti-ROR1 antibodies, we immunized mice using different strategies employing vaccines comprised of recombinant ROR1 protein, polynucleotide-ROR1 vaccines and CD154 genetic adjuvants, or replication-defective adenovirus vectors encoding ROR1 and CD154. We extirpated the spleens of animals that developed high-titer serum anti-ROR1 antibodies and used these to generate monoclonal-antibody-(mAb)-producing hybridomas or antibody phage-display libraries that subsequently were screened for ROR1-binding. Over 70 unique mAbs were generated that each bound the extra-cellular domain of native ROR1. Most mAbs recognized an epitope(s) within the ROR1 Ig-like domain, which appears to represent the immune dominant epitope. Other mAb recognized epitopes within the conserved ROR1 Kringle domain. One mAb (UC D10-001) had distinctive binding to an intradomain epitope of human ROR1 (hROR1). UC D10-001 was the only mAb we found directly cytotoxic for hROR1-expressing leukemia cells cultured in media without complement for 6 hours. We found that UC D10-001 could induce significant reductions in basal levels of phosphorylated AKT in hROR1-expressing leukemia cells. Moreover, UC D10-001 significantly decreased the basal levels of phosphorylated AKT in freshly isolated human CLL cells (N=4) to levels comparable to that observed in co-cultures containing 10 mM LY294002, a broad-spectrum inhibitor of PI3K. We examined whether this mAb had cytotoxic activity for leukemia cell in vivo. For this we examined whether we could inhibit the adoptive transfer of human-ROR1-expressing leukemia cells to young, syngeneic recipient mice made transgenic for human ROR1 under control of a B-cell specific promoter. Cohorts of 5 animals per group were each given intravenous injections of antibody at a dose of at 10 mg/kg. Each cohort was treated with UC D10-001, control IgG, or 4A5, an anti-ROR1 mAb specific for a non-cross-reactive epitope located in the Ig-like domain of ROR1. Each animal received an intravenous injection of 5 × 105 ROR1-expressing leukemia cells and then was assessed weekly for circulating leukemia cells by flow cytometry. UC D10-001, but not control IgG or 4A5, significantly inhibited engraftment of the ROR1+ leukemia. Four weeks after adoptive transfer, animals treated with UC D10-001 had a 10-fold lower median number of leukemia B cells in the blood than animals treated with control IgG or 4A5. We also tested UC D10-001 for its capacity to induce clearance of human ROR1+ CLL cells engrafted into the peritoneal cavity of Rag-2−/−/γc−/− immune deficient mice. Each of these mice received intraperitoneal injections of equal numbers of human ROR1+ CLL cells prior to receiving D10-001, control IgG, or 4A5, each at 10 mg/kg. These animals were sacrificed seven days later and the human leukemia cells were harvested via peritoneal lavage. In mice treated with UC D10-001 we harvested an average of only 6 × 104 ± 3 × 104 CLL cells. This number of cells was significantly less than the average number of CLL cells harvested from control IgG or 4A5-treated mice (8 × 105 ± 4 × 105 or 7 × 105 ± 2 × 105, respectively, p <0.01). These studies indicate that the anti-ROR1 mAb UC D10-001 can be directly cytotoxic for ROR1-expressing leukemia cells in vitro and in vivo, a property that apparently is unique to this mAb among other anti-ROR1 mAbs. Because of the restricted expression of ROR1 on leukemia cells and the distinctive properties of this mAb, we propose that UC D10-001 might have potential utility in the treatment of patients with CLL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1960-1960
Author(s):  
Mark Klinger ◽  
Malek Faham ◽  
Jianbiao Zheng ◽  
Kojo S.J. Elenitoba-Johnson ◽  
Sherrie L. Perkins ◽  
...  

Abstract Background: Chronic lymphocytic leukemia (CLL) usually develops from asymptomatic monoclonal expansions of CD5 positive B-cells termed monoclonal B-cell lymphocytosis (MBL), present in the peripheral blood (PB) of approximately 5% of otherwise healthy older individuals. Although MBL only occasionally progresses to CLL, cases that do progress typically have higher MBL cell counts in the 1500-4000/µL range. Although antigen selection appears to play a central role in the development CLL, it is unclear whether this occurs at an early MBL stage or primarily during the progression of MBL to CLL. One prior study has reported clonal heterogeneity in MBL finding it in 4 of 6 low count MBL cases from familial CLL kindreds using a single cell PCR technique (Leukemia 2010,24:133-140). In this study, we assessed the VH repertoire and degree of clonal heterogeneity in sporadic MBL cases using next-generation sequencing (NGS) of the rearranged immunoglobulin heavy chain (IgH) locus. Methods: The 35 cases selected for sequencing represented residual, cryopreserved material from PB specimens submitted to ARUP for clinical phenotyping studies. All contained polytypic CD5 negative B-cells in addition to MBL/CLL phenotype cells, and had 2 or more vials for analysis. The majority (80%) had counts of MBL cells below 1000/µL (mean 294/, range 795-30 cells/µL). FACS purification of MBL cells (CD20+CD5+) and CD5 negative B-cells was performed on all samples. The IgH repertoire from the unsorted and two sorted populations was determined by NGS using the LymphoSIGHT method. Results: Five cases could not be analyzed due to insufficient numbers of MBL cells. Clonal VDJ rearrangements or clonotypes were identified in the remaining 30 based on their high frequency within the B-cell repertoire of the unsorted sample, and having a higher frequency in the sorted MBL cells relative to the sorted CD5 negative B-cells. Functional clonotypes were identified in 29 of these 30 cases. Interestingly, 5 cases had 2 functional unrelated clonotypes using different D and/or J segments that also employed different V segments. Of the 5 cases with 2 unrelated clonotypes, 3 had MBL cell counts below 1000/µL (32, 275, and 865) and 2 above (1640, 2600). Moreover, 1 of the clones in the case with 865 cells/µL represented only 25% of the MBL cells or 220 cells/µL, while 1 clone in the case with 2600 MBL cells/µL represented 18% of the MBL cells or 470 cells/µL. By flow cytometry, the CD5+ CD20+ cells in 2 of the cases with 2 functional clonotypes showed polytypic kappa/lambda expression (ratios near 1), 2 cases had uniform dim monotypic kappa expression, and 1 case showed 90% dim kappa and 10% dim lambda expression. The most frequently used VH segments were V4-34 in 6/34 or 18% of functional clonotypes, followed by V3-23 (11%), and V3-21 (9%). The V1-69 segment was used by only 1/34 (3%) functional clonotypes. The VH segments in 72% of cases with functional clonotypes were mutated (homology to germline < 98%), with 6 cases showing clear evidence of ongoing mutation by having 2 or more related clones. Conclusions: We demonstrate that MBL exhibits considerable clonal heterogeneity, with 2 distinct unrelated clones identified in 17% of 30 analyzed cases. Finding 2 distinct clones cannot be explained by a lack of allelic exclusion or the presence of 1 cell with 2 productive IgH rearrangements since each clone had different frequencies within the sorted MBL cell repertoire. This is further supported by finding the ratios of the two MBL clones in 2 cases being different in the unsorted compared to the MBL sorted cells. Clonal heterogeneity appears to occur at an early stage since the majority of clones (6/10) had cell counts below 500 cells/µL. We also found that clonal heterogeneity of MBL may not be detectable by flow cytometry or may appear as polytypic CD5+CD20+ B-cells. To our knowledge, this represents the first report of clonal heterogeneity in sporadic MBL. Our identification of infrequent use of V1-69 (1/34) supports prior studies indicating the VH repertoire of MBL is different than CLL which frequently employs V1-69. Finding evidence of ongoing VH mutation suggests antigen selection may occur in early MBL. Overall, our findings are consistent with recent observations (Cancer Cell 2011, 20;246-259) suggesting that hematopoietic stem cells from CLL patients can generate mono-or oligoclonal MBL phenotype cells that can then be selected through antigen binding for expansion. Disclosures Faham: Sequenta, Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1470-1474
Author(s):  
DE Hammerschmidt ◽  
C Jeanneret ◽  
M Husak ◽  
M Lobell ◽  
HS Jacob

A nonanemic chronic lymphocytic leukemia patient with nearly 500,000 lymphocytes/microL underwent leukapheresis when she presented with CNS symptoms and retinal vascular engorgement. Respiratory distress developed during the cell separator run, which led us to ask whether the procedure could have changed the adhesive properties of her cells. C5a desarginine, N-f-Met-Leu-Phe, adenosine diphosphate, and collagen all failed to aggregate her lymphocytes in vitro, but arachidonic acid, excess free calcium, and 4 mumol/L epinephrine did aggregate the cells. Arachidonate-induced aggregation appeared to be a toxic phenomenon: the ED50 for aggregation was statistically indistinguishable from that for cytotoxicity, and aspirin only mildly blunted the response. In contrast, epinephrine-induced aggregation was not associated with lactic dehydrogenase release or the loss of trypan blue exclusion and was blunted by propranolol; radiopindolol-binding studies confirmed the presence of a beta-adrenergic receptor. There were approximately 3,000 receptors/cell, with no statistically significant difference between normal and chronic lymphocytic leukemia B cells or between B cells and T cells (separated by rosetting techniques). The Kd for the B cells' receptor, however, was less than that for T cells by a factor of ten (P less than .01). We conclude that B cells may aggregate when stimulated and that they--like T cells--have beta-adrenergic receptors. Adrenergically mediated changes in B cell adhesiveness may play a role in regulating lymphocyte traffic; in the rare patient with truly enormous B cell counts, we postulate that they may be an occasional cause of morbidity.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3853-3858 ◽  
Author(s):  
Peter Chu ◽  
William G. Wierda ◽  
Thomas J. Kipps

Cytotoxic T lymphocytes (CTLs) can kill target cells by the granule/exocytosis pathway or the Fas-mediated apoptosis pathway. The sensitivity of chronic lymphocytic leukemia (CLL) B cells to CTL-mediated apoptosis before and after CD40 activation was examined. Resting or CD40-activated CLL cells were found to be equally sensitive to class I–restricted CTL-mediated killing. Despite expressing CD95, the CD40-activated CLL target cells were found to be resistant to apoptosis induced by CH11, an IgM CD95 monoclonal antibody (mAb). Consistent with this, inhibitors of caspases, which are involved in the Fas-induced apoptotic pathway (eg, N-carbobenzoxy-Val-Ala-Asp fluoromethyl ketone [z-VAD-fmk]), were unable to block destruction of CLL target cells by CTL. In addition, preincubation of the effector T cells with the anti-Fas ligand mAb NOK-2 failed to inhibit their subsequent ability to kill CLL target cells. On the other hand, CTL activity was blocked by inhibitors of the granule exocytosis pathway such as ethylene-glyco-tetra-acetic acid or concanamycin A. These results indicate that CD40 activation does not impair the sensitivity of CLL cells to Fas-independent CTL-mediated apoptosis.


2012 ◽  
Vol 53 (4) ◽  
pp. 739-742 ◽  
Author(s):  
Min Chen ◽  
Marcelo de Carvalho Bittencourt ◽  
Pierre Feugier ◽  
Gilbert C. Faure ◽  
Marie C. Béné

Blood ◽  
2000 ◽  
Vol 95 (3) ◽  
pp. 999-1006 ◽  
Author(s):  
Thomas Decker ◽  
Folker Schneller ◽  
Tim Sparwasser ◽  
Theresa Tretter ◽  
Grayson B. Lipford ◽  
...  

Bacterial DNA and synthetic CpG-oligodeoxynucleotides (ODNs) derived thereof have attracted attention because they activate cells of the immune system in a sequence-dependent manner. Here we investigated the potential of CpG-ODNs to cause proliferation, cytokine production, and regulation of surface molecules in human B-chronic lymphocytic leukemia (CLL) cells. CpG-ODN induced proliferation in both B-CLL cells and normal B cells; however, only B-CLL cells increased proliferative responses when CpG-ODN was added to co-cultures of CD40-ligand transfected mouse fibroblasts (CD40LF) and B cells. Production of interleukin-6 and tumor necrosis factor  was detectable at borderline levels, using CpG-ODN as the only stimulus. In contrast, when CpG-ODN was added to co-cultures of B cells and CD40LF, a strong increase in cytokine production occurred in B-CLL cells as well as in normal B cells. The surface molecules CD40, CD58, CD80, CD86, CD54, and MHC class I molecules were up-regulated in B-CLL cells, whereas CD95 expression was not influenced by CpG-ODN stimulation. The same pattern of surface molecule regulation was observed in normal B cells, but up-regulation of CD40 was significantly stronger in B-CLL cells. Costimulation with CpG-ODN and CD40LF resulted in further up-regulation of CD58, CD80, CD86, and MHC class I molecules. In contrast, CD95 expression induced by CD40-ligation was inhibited by CpG-ODN. CpG-ODN activated B-CLL cells acquired a strong stimulatory capacity toward T cells in allogeneic mixed lymphocyte reaction. This effect was completely inhibited by a combination of anti-CD80 and anti-CD86 monoclonal antibody. Taken together, these findings suggest the possible use of CpG-ODN for immunotherapeutic strategies in patients with B-CLL.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3685-3685
Author(s):  
Magdalena Hagn ◽  
Verena Ebel ◽  
Kai Sontheimer ◽  
Thamara Beyer ◽  
Sue E. Blackwell ◽  
...  

Abstract Abstract 3685 Poster Board III-621 Interleukin 21 (IL-21) and CpG oligodeoxynucleotides (CpG ODN) are two novel and highly promising agents for the treatment of hematological diseases. Recently, we reported that IL-21 and CpG ODN induce granzyme B (GrB) and GrB-dependent apoptosis in malignant B cells from patients with B chronic lymphocytic leukemia (B-CLL), but not in healthy peripheral B cells. Using various techniques including FACS analysis, Western immunoblotting and RT-PCR we further characterized the factors accountable for the different apoptotic response of B-CLL cells versus normal B cells. GrB induction in B-CLL cells after stimulation with IL-21 and CpG ODN was associated with upregulation of transcription factors, which are normally involved in the differentiation of cytotoxic T lymphocytes (CTL) including T-bet, Eomesodermin (EOMES) and nuclear factor of activated T cells (NFAT), a finding not observed in normal healthy B cells. Furthermore, the induction of GrB in B-CLL cells by IL-21 and CpG ODN required signaling via a JAK/STAT-dependent pathway, as suggested by simultaneous upregulation of phosphorylated STAT3 and complete abrogation of GrB expression by the pan-JAK inhibitor pyridone 6. Stimulation of B-CLL cells with IL-21 and CpG ODN upregulated molecules involved in cell adhesion (CD54), antigen presentation (MHC class I), co-stimulation (CD40, CD86), and GrB uptake (CD222), suggesting B-CLL cells activated with IL-21 and CpG ODN are able to contact other immune cells and may be able to reabsorb secreted GrB. Similar findings resulted when the toll-like receptor (TLR)7 agonist imiquimod was used instead of the TLR9 agonist CpG ODN, suggesting that comparable differentiation programs are initiated by TLR7 and TLR9. In summary, B-CLL cells can express transcription factors involved in cytotoxic differentiation of CTL as well as GrB in response to IL-21 and TLR stimulation. The B-CLL cell differentiation program described in this study could explain our recent findings of GrB-dependent apoptosis in B-CLL cells but not in benign B cells. Moreover, our data provide novel insights into the aberrant signaling state of B-CLL cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3853-3858 ◽  
Author(s):  
Peter Chu ◽  
William G. Wierda ◽  
Thomas J. Kipps

Abstract Cytotoxic T lymphocytes (CTLs) can kill target cells by the granule/exocytosis pathway or the Fas-mediated apoptosis pathway. The sensitivity of chronic lymphocytic leukemia (CLL) B cells to CTL-mediated apoptosis before and after CD40 activation was examined. Resting or CD40-activated CLL cells were found to be equally sensitive to class I–restricted CTL-mediated killing. Despite expressing CD95, the CD40-activated CLL target cells were found to be resistant to apoptosis induced by CH11, an IgM CD95 monoclonal antibody (mAb). Consistent with this, inhibitors of caspases, which are involved in the Fas-induced apoptotic pathway (eg, N-carbobenzoxy-Val-Ala-Asp fluoromethyl ketone [z-VAD-fmk]), were unable to block destruction of CLL target cells by CTL. In addition, preincubation of the effector T cells with the anti-Fas ligand mAb NOK-2 failed to inhibit their subsequent ability to kill CLL target cells. On the other hand, CTL activity was blocked by inhibitors of the granule exocytosis pathway such as ethylene-glyco-tetra-acetic acid or concanamycin A. These results indicate that CD40 activation does not impair the sensitivity of CLL cells to Fas-independent CTL-mediated apoptosis.


Sign in / Sign up

Export Citation Format

Share Document