scholarly journals Gastric MALT lymphoma B cells express polyreactive, somatically mutated immunoglobulins

Blood ◽  
2010 ◽  
Vol 115 (3) ◽  
pp. 581-591 ◽  
Author(s):  
Vanessa J. Craig ◽  
Isabelle Arnold ◽  
Christiane Gerke ◽  
Minh Q. Huynh ◽  
Thomas Wündisch ◽  
...  

Abstract Gastric B-cell lymphoma of mucosa-associated lymphoid tissue (MALT) arises against a background of chronic inflammation caused by persistent Helicobacter pylori infection. The clinical and histopathologic features of the human tumor can be reproduced by Helicobacter infection of BALB/c mice. In this study, we have analyzed the antibody sequences and antigen specificity of a panel of murine and human MALT lymphoma–derived antibodies. We find that a majority of tumors in patients as well as experimentally infected mice are monoclonal. The tumor immunoglobulin heavy chain genes have undergone somatic hypermutation, and approximately half of all tumors show evidence of intraclonal variation and positive and/or negative selective pressure. Recombinantly expressed MALT lymphoma antibodies bind with intermediate affinity to various unrelated self- and foreign antigens, including Helicobacter sonicate, immunoglobulin G (IgG), DNA, and stomach extract; antigen binding is blocked in a dose-dependent manner in competitive enzyme-linked immunosorbent assays. A strong bias toward the use of VH gene segments previously linked to autoantibodies and/or polyreactive antibodies in B-cell malignancies or autoimmune pathologies supports the experimental finding of polyreactivity. Our results suggest that MALT lymphoma development may be facilitated by an array of local self- and foreign antigens, providing direct antigenic stimulation of the tumor cells via their B-cell receptor.

2018 ◽  
Vol 11 (3) ◽  
pp. 187-193 ◽  
Author(s):  
Petruta Violeta Filip ◽  
◽  
Denisa Cuciureanu ◽  
Laura Sorina Diaconu ◽  
Ana Maria Vladareanu ◽  
...  

Primary gastric lymphoma (PGL) represents a rare pathology, which can be easily misdiagnosed because of unspecific symptoms of the digestive tract. Histologically, PGL can vary from indolent marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue (MALT) to aggressive diffuse large B-cell lymphoma (DLBCL). During the years, clinical trials revealed the important role of Helicobacter pylori (H. pylori) in the pathogenesis of gastric MALT lymphoma. Infection with Helicobacter pylori is an influential promoter of gastric lymphomagenesis initiation. Long-term studies revealed that eradication therapy could regress gastric lymphomas.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 417-417 ◽  
Author(s):  
Alexander Deutsch ◽  
Ariane Aigelsreiter ◽  
Christine Beham-Schmid ◽  
Alfred Beham ◽  
Werner Linkesch ◽  
...  

Abstract Extranodal marginal zone B-cell lymphoma of mucosa associated lymphoid tissue (MALT lymphoma) accounts for approximately 7% to 8% of all non-Hodgkin lymphomas (NHLs) being the third most frequent histological subtype. The gastrointestinal tract - particularly the stomach - is the most common site of MALT lymphoma comprising 50% of all cases, but virtually every organ may be affected by this type of lymphoma. Transformation (or de novo emergence at extranodal sites) in diffuse large B-cell lymphoma (DLBCL) occurs but - according to the WHO criteria - is considered as separate entity. The understanding of the molecular biology of MALT lymphoma has significantly improved following the recent cloning of recurrent balanced translocations such as t(11;18) or t(14;18), but a mechanism for genome-wide instability during MALT lymphomagenesis has not been described. We have reported that the somatic hypermutation process (SHM) physiologically aimed at mutating the immunoglobulin variable gene (IgV) aberrantly targets multiple proto-oncogenes in >50% of DLCBL (Pasqualucci et al., Nature412:341, 2001). Consequently, multiple mutations are introduced in the 5′ region of genes including known proto-oncogenes such as PIM-1, PAX-5, Rho/TTF and c-MYC. To further investigate whether aberrant somatic hypermutation (ASHM) also occurs in MALT lymphoma, we studied the mutation profile of these genes in 17 MALT lymphomas (6 of gastric- and 11 of nongastric origin) and 18 extranodal DLBCL (10 gastric, 8 nongastric). Mutations in one or more genes were detected in 15 of 17 (88.2%) cases of MALT lymphoma and in all of 18 (100%) cases of extranodal DLBCL. 7 of 17 (41.2%) and 15 of 18 (83.3%) carried mutations in two or more genes in the MALT- and DLBC-lymphoma group, respectively. Overall, mutations in PIM-1 occurred in 5 of 17 (29.4%) cases with MALT lymphoma and in 10 of 18 (55.5%) in extranodal DLBCL cases. For PAX-5, the distribution of mutated cases between MALT- and DLBC-lymphoma was 6 of 17 (35.3%) and 10 of 18 (55.5%), for Rho/TTF 3 of 17 (17.6%) and 8 of 18 (44.4%) and for c-MYC 9 of 17 (52.9%) and 12 of 18 (66.6%), respectively. A total of 99 sequence variants were found in 35 cases, 29 in the MALT lymphomas and 70 in extranodal DLBCL. Although the mutations were almost exclusively single base pair substitutions (n=98 ), an insertion was also present (n=1). Mutations were of somatic origins, occur independent of chromosomal translocations to the Ig loci and share features of the IgV SHM process including bias for transition over transversion, preferential hotspot (RGYW/WRCY) targeting and restriction to the first 1–2Kb from the promoter. The mean mutation frequency in mutated MALT lymphomas was with 0.045 x10−2/bp 1.7 fold lower compared to 0.08 x10−2/bp in mutated extranodal DLBCL. Further in PIM-1, PAX-5 and c-MYC some of the mutations were found to affect coding exons, leading to amino acid exchanges, thus potentially altering gene function. These data indicate that aberrant SHM is associated with extranodal DLBCL and MALT lymphoma, likewise. By mutating regulatory and coding sequences of the targeted genes and by possibly favouring chromosomal translocations ASHM may represent a major contributor to their pathogenesis. ASHM may further support a model of MALT lymphomagenesis leading from an antigen driven lesion to transformed MALT lymphoma finally evolving to overt DLBCL.


2012 ◽  
Vol 26 (2) ◽  
pp. 182-194 ◽  
Author(s):  
Alexander JA Deutsch ◽  
Elisabeth Steinbauer ◽  
Nicole A Hofmann ◽  
Dirk Strunk ◽  
Tanja Gerlza ◽  
...  

2022 ◽  
Vol 41 (1) ◽  
Author(s):  
Masoud Keikha ◽  
Amirhossein Sahebkar ◽  
Yoshio Yamaoka ◽  
Mohsen Karbalaei

Abstract Background Recent studies have investigated the role of Helicobacter pylori infection in the development of gastric mucosa-associated lymphoid tissue (MALT) lymphoma. It is estimated that approximately 0.1% of people infected with H. pylori develop gastric MALT lymphoma. However, the role of the CagA antigen, the highest causative agent of H. pylori, in increasing the risk of gastric MALT lymphoma remains unclear and controversial. A systematic review and meta-analysis were conducted to evaluate the effect of cagA status on the development of gastric MALT lymphoma. Methods All articles evaluating the status of the cagA gene in the development of gastric MALT lymphoma were collected using systematic searches in online databases, including PubMed, Scopus, Embase, and Google Scholar, regardless of publication date. The association between cagA and gastric MALT lymphoma was assessed using the odds ratio (OR) summary. In addition, a random-effects model was used in cases with significant heterogeneity. Results A total of 10 studies met our inclusion criteria, among which 1860 patients participated. No association between cagA status and the development of MALT lymphoma (extranodal marginal zone B-cell lymphoma) was found in this study (OR 1.30; 0.906–1.866 with 95% CIs; I2: 45.83; Q-value: 12.92). Surprisingly, a meaningful association was observed between cagA status and diffuse large B-cell lymphoma (OR 6.43; 2.45–16.84 with 95% CIs). We also observed an inverse association between vacA and gastric MALT lymphoma risk (OR 0.92; 0.57–1.50 with 95% CIs). Conclusions It seems that the infection with cagA-positive H. pylori strains does not have a meaningful effect on the gastric MALT lymphoma formation, while translocated CagA antigen into the B cells plays a crucial role in the development of diffuse large B-cell lymphoma.


Blood ◽  
2018 ◽  
Vol 131 (21) ◽  
pp. 2297-2306 ◽  
Author(s):  
Ralf Küppers ◽  
Freda K. Stevenson

Abstract The development of follicular lymphoma (FL) from a founder B cell with an upregulation of B-cell lymphoma 2 (BCL2), via the t(14;18) translocation, to a proliferating clone, poised to undergo further transformation to an aggressive lymphoma, illustrates the opportunistic Darwinian process of tumorigenesis. Protection against apoptosis allows an innocent cell to persist and divide, with dangerous accumulation of further mutational changes, commonly involving inactivation of chromatin-modifying genes. But this is not all. FL cells reflect normal B cells in relying on expression of surface immunoglobulin. In doing so, they add another supportive mechanism by exploiting the natural process of somatic hypermutation of the IGV genes. Positive selection of motifs for addition of glycan into the antigen-binding sites of virtually all cases, and the placement of unusual mannoses in those sites, reveals a posttranslational strategy to engage the microenvironment. A bridge between mannosylated surface immunoglobulin of FL cells and macrophage-expressed dendritic cell–specific ICAM-3–grabbing nonintegrin produces a persistent low-level signal that appears essential for life in the hostile germinal center. Early-stage FL therefore requires a triad of changes: protection from apoptosis, mutations in chromatin modifiers, and an ability to interact with lectin-expressing macrophages. These changes are common and persistent. Genetic/epigenetic analysis is providing important data but investigation of the posttranslational landscape is the next challenge. We have one glimpse of its operation via the influence of added glycan on the B-cell receptor of FL. The consequential interaction with environmental lectins illustrates how posttranslational modifications can be exploited by tumor cells, and could lead to new approaches to therapy.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3500-3504 ◽  
Author(s):  
Alexander J. A. Deutsch ◽  
Ariane Aigelsreiter ◽  
Philipp B. Staber ◽  
Alfred Beham ◽  
Werner Linkesch ◽  
...  

AbstractRecently, a novel mechanism introducing genetic instability, termed aberrant somatic hypermutation (ASHM), has been described in diffuse large B-cell lymphoma. To further investigate whether ASHM also occurs in mucosa-associated lymphoid tissue type (MALT) lymphoma, we studied the mutation profile of PIM1, PAX5, RhoH/TTF, and c-MYC in 17 MALT lymphomas and 17 extranodal diffuse large B-cell lymphomas (DLBCLs) still exhibiting a low-grade MALT lymphoma component (transformed MALT lymphoma). Mutations in one or more genes were detected in 13 (76.5%) of 17 cases of MALT lymphomas and in all of 17 (100%) cases of extranodal DLBCL. A total of 100 sequence variants were found in 30 of 34 cases, 28 in the MALT lymphomas and 72 in extranodal DLBCL. Further, in PIM1 and c-MYC some of the mutations were found to affect coding exons, leading to amino acid exchanges, thus potentially altering gene function. Expression levels of activation-induced cytidine deaminase (AID), an enzyme essential for somatic hypermutation (SHM), was associated with the mutational load. These data indicate that aberrant SHM is associated with extranodal DLBCL and MALT lymphoma, likewise. By mutating regulatory and coding sequences of the targeted genes, ASHM may represent a major contributor to their pathogenesis.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1220-1220
Author(s):  
Minh Q. Huynh ◽  
Thomas Wuendisch ◽  
Annette Ramaswamy ◽  
Andreas Neubauer

Abstract The Nf-κB signaling pathway is important for lymphoma survival and cell proliferation. In recent immunohistological studies, the B-cell receptor (BCR), Src kinases and PLC γ 2 were shown to be highly expressed in primary mediastinal B-cell lymphoma and lymphocyte predominant Hodgkin lymphoma, but not in classical Hodgkin lymphoma. Activation of PLC γ 2 is a crucial step in regulating Nf-κB through protein kinase C (PKC). The PLC-PKC cascade also activates the Ras-Raf-Erk signaling pathway by recruiting GRP3 to the cell membrane. These signaling cascades are well studied in physiological B-cells, but there is little data about the role of PLC γ 2 in lymphomas. Our study compared the PLC γ 2 expression in low-grade gastric MALT lymphoma tissue and chronic gastritis tissue from the same patient by quantitative PCR. In 8 out of 10 cases PLC γ 2 was overexpressed in MALT lymphomas, but not in gastritis. We performed functional studies with the PLC-inhibitor U73122 and PLC γ 2 specific siRNA in two lymphoma cell lines (SSK41, Raji). Proliferation of lymphoma cells was significantly reduced by inhibition of PLC γ 2 on protein level and by knocking down PLC γ 2 mRNA by transfection with a specific siRNA. Our results indicate that proliferation and survival of lymphoma cells depend, at least in part, on the activated PLC-PKC signaling cascade and that it is possible to reduce lymphoma survival by the “small molecule inhibitor” U73122. PLC γ 2 could be a new target for lymphoma treatment.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3885-3890 ◽  
Author(s):  
Ming-Qing Du ◽  
Huaizheng Peng ◽  
Hongxiang Liu ◽  
Rifat A. Hamoudi ◽  
Tim C. Diss ◽  
...  

BCL10 is directly involved in t(1;14)(p22;q32) of mucosa-associated lymphoid tissue (MALT) lymphoma. Wild-type BCL10 promoted apoptosis and suppressed malignant transformation in vitro, whereas truncated mutants lost the pro-apoptotic activity and exhibited gain of function enhancement of transformation. We studied 220 lymphomas for genomic BCL10 mutation by polymerase chain reaction–single-strand conformational polymorphism and DNA sequencing. Nineteen mutations were found in 13 lymphoma specimens, as follows: 8 of 120 (6.7%) mucosa-associated lymphoid tissue (MALT) lymphomas, 4 of 42 (9.5%) follicular lymphomas, and 1 of 23 (4.3%) diffuse large B-cell lymphomas. No mutations were found in 14 mantle cell lymphomas or 21 T-cell lymphomas. High-grade MALT lymphoma tended to show a slightly higher mutation frequency (2 of 25, 8%) than low-grade MALT tumor (6 of 95, 6.3%). Among low-grade gastric MALT lymphoma, mutations were found in 3 of 11 tumors that did not respond to Helicobacter pylori eradication therapy, but none were found in 22 tumors that regressed completely after H pylori eradication. All 14 potentially pathogenic mutations were distributed in the carboxyl terminal domain of BCL10. Deletion accounted for 10 of these mutations; 10 of 14 mutations caused truncated forms of BCL10. Western blot analysis of a mutant case confirmed the presence of truncated BCL10 products of anticipated size. Our results suggest that BCL10 mutation may play a pathogenic role in B-cell lymphoma development, particularly in aggressive and antibiotic unresponsive MALT lymphomas, and may further implicate the biologic importance of the carboxyl terminal of the molecule.


Sign in / Sign up

Export Citation Format

Share Document