scholarly journals A zinc-finger transcriptional activator designed to interact with the γ-globin gene promoters enhances fetal hemoglobin production in primary human adult erythroblasts

Blood ◽  
2010 ◽  
Vol 115 (15) ◽  
pp. 3033-3041 ◽  
Author(s):  
Andrew Wilber ◽  
Ulrich Tschulena ◽  
Phillip W. Hargrove ◽  
Yoon-Sang Kim ◽  
Derek A. Persons ◽  
...  

Abstract Fetal hemoglobin (HbF) is a potent genetic modifier of the severity of β-thalassemia and sickle cell anemia. We used an in vitro culture model of human erythropoiesis in which late-stage erythroblasts are derived directly from human CD34+ hematopoietic cells to evaluate HbF production. This system recapitulates expression of globin genes according to the developmental stage of the originating cell source. When cytokine-mobilized peripheral blood CD34+ cells from adults were cultured, background levels of HbF were 2% or less. Cultured cells were readily transduced with lentiviral vectors when exposed to vector particles between 48 and 72 hours. Among the genetic elements that may enhance fetal hemoglobin production is an artificial zinc-finger transcription factor, GG1-VP64, designed to interact with the proximal γ-globin gene promoters. Our data show that lentiviral-mediated, enforced expression of GG1-VP64 under the control of relatively weak erythroid-specific promoters induced significant amounts of HbF (up to 20%) in erythroblasts derived from adult CD34+ cells without altering their capacity for erythroid maturation and only modestly reducing the total numbers of cells that accumulate in culture after transduction. These observations demonstrate the potential for sequence-specific enhancement of HbF in patients with β-thalassemia or sickle cell anemia.

Blood ◽  
1987 ◽  
Vol 70 (3) ◽  
pp. 716-720 ◽  
Author(s):  
BA Miller ◽  
M Salameh ◽  
M Ahmed ◽  
N Olivieri ◽  
G Antognetti ◽  
...  

Erythrocytes and progenitor-derived erythroblasts of sickle cell anemia patients from the Eastern Province of Saudi Arabia contain increased fetal hemoglobin and G gamma globin. A distinctive DNA polymorphism haplotype in the beta globin gene cluster (++- +-), tightly coupled to a C----T substitution at position -158 5′ to the cap site of the G gamma globin gene, is strongly associated with sickle cell disease in this region. To determine whether the increased fetal hemoglobin production and/or elevated G gamma globin content are tightly linked to this haplotype, we studied 55 members of five Saudi families in which sickle cell disease is present. The results did not suggest a tight linkage of the haplotype to increased fetal hemoglobin production. On the other hand, several sickle trait family members heterozygous for the haplotype had normal fetal hemoglobin production in culture but elevated G gamma to A gamma ratios in peripheral blood. This observation suggests that in this genetic background increased expression of the G gamma globin gene may occur without a measurable increase in total fetal hemoglobin production. The family studies also clearly demonstrate that increased fetal hemoglobin production by erythroid progenitors is dependent on zygosity for the sickle gene in this population. These findings strongly suggest that other factors, such as the products of genes stimulated by hemolytic stress or other genetic determinants associated with the Saudi beta S chromosome, may interact with the -158 C----T substitution and influence gamma globin gene expression in this population.


Blood ◽  
1987 ◽  
Vol 70 (3) ◽  
pp. 716-720 ◽  
Author(s):  
BA Miller ◽  
M Salameh ◽  
M Ahmed ◽  
N Olivieri ◽  
G Antognetti ◽  
...  

Abstract Erythrocytes and progenitor-derived erythroblasts of sickle cell anemia patients from the Eastern Province of Saudi Arabia contain increased fetal hemoglobin and G gamma globin. A distinctive DNA polymorphism haplotype in the beta globin gene cluster (++- +-), tightly coupled to a C----T substitution at position -158 5′ to the cap site of the G gamma globin gene, is strongly associated with sickle cell disease in this region. To determine whether the increased fetal hemoglobin production and/or elevated G gamma globin content are tightly linked to this haplotype, we studied 55 members of five Saudi families in which sickle cell disease is present. The results did not suggest a tight linkage of the haplotype to increased fetal hemoglobin production. On the other hand, several sickle trait family members heterozygous for the haplotype had normal fetal hemoglobin production in culture but elevated G gamma to A gamma ratios in peripheral blood. This observation suggests that in this genetic background increased expression of the G gamma globin gene may occur without a measurable increase in total fetal hemoglobin production. The family studies also clearly demonstrate that increased fetal hemoglobin production by erythroid progenitors is dependent on zygosity for the sickle gene in this population. These findings strongly suggest that other factors, such as the products of genes stimulated by hemolytic stress or other genetic determinants associated with the Saudi beta S chromosome, may interact with the -158 C----T substitution and influence gamma globin gene expression in this population.


Blood ◽  
1986 ◽  
Vol 67 (5) ◽  
pp. 1404-1410 ◽  
Author(s):  
BA Miller ◽  
M Salameh ◽  
M Ahmed ◽  
J Wainscoat ◽  
G Antognetti ◽  
...  

Abstract Homozygous sickle cell disease in the eastern province of Saudi Arabia is clinically mild. Circulating fetal hemoglobin levels of 16.0 +/- 7.4% were found in these anemic patients, but only 1.09 +/- 0.97% in their sickle trait parents. To determine whether these sickle cell anemia patients inherit an increased capacity to synthesize fetal hemoglobin, a radioimmunoassay of fetal and adult hemoglobin was performed on erythroid progenitor (BFU-E)-derived erythroblasts from Saudi Arabian sickle cell patients and their parents. Mean fetal hemoglobin content per BFU-E-derived erythroblast from Saudi Arabian sickle cell patients was 6.2 +/- 2.4 pg/cell or 30.4 +/- 8.6% fetal hemoglobin (normal 1.1 +/- 0.7 pg/cell and 5.1 +/- 1.8%). Linear regression analysis of % HbF in peripheral blood versus % HbF per BFU-E- derived cell showed a positive correlation with an r of 0.65. The variance of the intrinsic capacity to produce HbF may account for almost 40% (r2) of the variance of circulating fetal hemoglobin but other factors, particularly selective survival of F cells, must also contribute significantly. Despite virtually normal HbF levels in sickle trait parents of these Saudi patients, mean fetal hemoglobin production per BFU-E-derived erythroblast in these individuals was elevated to 3.42 +/- 1.79 pg/cell or 16.1 +/- 6.4% fetal hemoglobin, and the magnitude of fetal hemoglobin production found in parents correlated with that of the patients. These data indicate that the high fetal hemoglobin in Saudi sickle cell disease is genetically determined but expressed only during accelerated erythropoiesis. Further evidence of such genetic determination was provided by analysis of DNA polymorphisms within the beta-globin gene cluster on chromosome 11. This revealed a distinctive 5′ globin haplotype (+ + - + +) on at least one chromosome 11 in all high F SS and AS tested. The precise relationship of this haplotype to HbF production in this population remains to be defined.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S1-S1
Author(s):  
Jonathan Tsai ◽  
John Manis ◽  
Kimberly Ching

Abstract Sickle cell disease (SCD) results from a point mutation in the beta globin gene leading to abnormal hemoglobin production and, correspondingly, abnormal sickling of erythrocytes that result in chronic anemia and vaso-occlusive crises. Patients with sickle cell are commonly treated with lifelong transfusions or hydroxyurea to increase fetal hemoglobin to ameliorate sickling. Evolving therapies are aimed at correcting known mutations with gene therapy on autologous hematopoietic stem and progenitor cells (HSCs), indicating a growing need for optimal stem cell collections from SCD patients. Recent studies have shown the safety and efficacy of plerixafor to increase peripheral CD34+ cells, enhancing collection. Here we show that standard apheresis collection procedures from sickle cell patients are inefficient when compared to healthy donors. Eleven patients with SCD were recruited to receive plerixafor and followed by peripheral CD34+ cell monitoring and apheresis collection. Overall, efficiency ranged from 2% to 55% with no correlation to total peripheral CD34+ cell count. To better understand where the CD34+ cells sedimented in the apheresis instrument, we collected different layers of the interface ranging from 3% to 10% estimated Hct and found that deeper layers with higher hematocrit (7.5%-10%) are enriched for CD34+ cells when compared to historical donors with healthy red cells. All patients had undergone red cell exchange prior to collection, yet this intervention did not prevent the altered sedimentation of CD34+ cells. These findings indicate that CD34+ cells from SCD patients sediment at a deeper, higher Hct interface layer during apheresis and support the altered collection practices for the efficient collection of HSCs for cellular therapies.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 108-108 ◽  
Author(s):  
Diego F. Wyszynski ◽  
Clinton T. Baldwin ◽  
Mario Cleves ◽  
John J. Farrell ◽  
Alice Bisbee ◽  
...  

Abstract Hydroxyurea (HU) is an effective treatment for most patients with symptomatic sickle cell anemia, yet the fetal hemoglobin (HbF) response to treatment is variable. A capacity to predict an individual’s HbF response to HU would aid the selection of patients for treatment and reduce toxicity from unfruitful dose escalation. Unfortunately, this is presently not possible. We hypothesized that HbF levels and the HbF response to HU are regulated as complex genetic traits and previously showed that 12 single nucleotide polymorphisms (SNPs), associated with a 20% to 30% difference in baseline HbF concentrations, were found in the introns of 4 genes, PDE7B, MAP7, MAP3K5 and PEX7, spanning the genomic region from 136.1 Mb to 137.5 Mb on chromosome 6q (Cell Mol Biol 50:23, 2004). To begin to define the genetic predictors of the HbF response to (HU), we examined SNPs in candidate genes and genetic loci in 214 patients with sickle cell anemia whose HbF levels were available before HU treatment was started and after these patients reached a stable dose of this drug. Forty-six candidate genes were chosen because of their possible role in HbF regulation and HU metabolism and 226 SNPs in these genes were examined by mass spectrometry. A computer application developed in STATA was used to carry out multiple linear regression analysis with simultaneous adjustment for age, sex and the α- and β-globin gene cluster haplotypes for each SNP and combinations of nearby SNPs. Dominant, codominant and recessive models for modulating HbF expression were tested. In this QTL analysis, SNPs in a member of the cytochrome P450 family (CYP2C9), in aquaporin 9 (AQP9) and in the chromosome 6q qtl described above were significantly associated with the HbF response to HU. The effect of genotype on the magnitude of HbF response to HU was examined for selected SNPs in AQP9 and CYP2C9. In AQP9, AA was associated with an average increase of 6% in HbF compared with GG (rs1867380; OR 6.6, p<0.001). In CYP2C9, AG was associated with an average increase of 3% and GG with an average increase of 11% (rs2209331; OR 1.6 and 7.5, p=0.05, 0.000). An effect was also noted for the 6q qtl. We also treated the increase in HbF as a discretized variable, comparing individuals in the lower two quartiles of HbF response with individuals in the top quartile of HbF response to HU (Blood 89:1078, 1997). These same genotypes were more common in good HU responders than in poor responders (p<0.05). CYP2C9 (10q24) encodes a member of the cytochrome P450 superfamily of enzymes, monooxygenases catalyzing many reactions involved in drug metabolism, plays some role in the metabolism of HU derivatives. AQP9 (15q22.1–22.1), belongs to a family of water-selective membrane channels and stimulates urea transport, permitting passage of many uncharged solutes. These results begin to define the pattern of genetic heterogeneity that may be used ultimately to predict a patient’s HbF response to HU. As multiple genes are very likely to play roles in this response, the interactions and predictive value of their polymorphisms will need to be modeled with methods that account for simultaneous associations.


Blood ◽  
1989 ◽  
Vol 73 (3) ◽  
pp. 845-848 ◽  
Author(s):  
IS Han ◽  
HJ Huang ◽  
YT Zeng ◽  
KD Lanclos ◽  
TH Huisman

Abstract We have determined the nucleotide sequence of the 2,360-bp long EcoRI fragment from four chromosomes; this fragment is located 3′ to the A gamma globin gene and is considered to contain the enhancer element identified by Bodine and Ley. The chromosomes were from an Arabian sickle cell anemia patient with high Hb F and a homozygosity for haplotype No 31 and from a black sickle cell anemia patient with low Hb F and a homozygosity for haplotype No 19. A third chromosome carried the determinant for a nondeletional hereditary persistence of fetal hemoglobin seen in a Chinese subject, and the fourth was a normal chromosome from a Yugoslavian subject. Twenty-one differences were observed when a comparison was made with the published sequence; no differences were seen between the sequences of the four different samples except for an additional mutation in the Chinese. These data make it unlikely that specific mutations within this sequence are associated with increases in G gamma and A gamma production.


2020 ◽  
Vol 9 (11) ◽  
pp. 3782
Author(s):  
Martin H. Steinberg

Fetal hemoglobin (HbF) usually consists of 4 to 10% of total hemoglobin in adults of African descent with sickle cell anemia. Rarely, their HbF levels reach more than 30%. High HbF levels are sometimes a result of β-globin gene deletions or point mutations in the promoters of the HbF genes. Collectively, the phenotype caused by these mutations is called hereditary persistence of fetal hemoglobin, or HPFH. The pancellularity of HbF associated with these mutations inhibits sickle hemoglobin polymerization in most sickle erythrocytes so that these patients usually have inconsequential hemolysis and few, if any, vasoocclusive complications. Unusually high HbF can also be associated with variants of the major repressors of the HbF genes, BCL11A and MYB. Perhaps most often, we lack an explanation for very high HbF levels in sickle cell anemia.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3171-3171
Author(s):  
Russell E. Ware ◽  
Barry Eggleston ◽  
Tatiana Abramova ◽  
Sherri A. Zimmerman ◽  
Alice Lail ◽  
...  

Abstract Fetal hemoglobin (HbF) is recognized as a major determinant of clinical disease severity in children and adults with sickle cell anemia (SCA). Patients with elevated HbF levels have a milder disease course, and many current therapeutic protocols for SCA include pharmacological induction of HbF. However, baseline and treatment HbF levels vary widely due to presumed genetic and environmental factors. Recognized globin gene modifiers of HbF include the beta globin haplotype and a potential contribution from concomitant alpha thalassemia. To characterize more fully the influence of globin gene modifiers on both baseline and treatment HbF levels, we retrospectively determined the beta globin haplotype (Benin, CAR, Senegal, Cameroon, or Arab-Indian) by selective gamma globin gene nucleotide sequencing and the alpha globin gene number (2, 3, or 4) by PCR for 67 African-American children with SCA receiving hydroxyurea therapy at stable maximal tolerated dose (MTD). The four beta globin haplotypes and frequencies identified in our cohort of children include Benin (0.61), CAR (0.17), Senegal (0.12), and Cameroon (0.10). The number of alpha globin genes and frequencies identified were 4 genes (0.72), 3 genes (0.25) and 2 genes (0.03). Baseline and MTD HbF levels were analyzed according to each variable. The average baseline HbF value for the entire cohort of children was 7.7 ± 4.4% (median 7.6%, range 1.3 – 19.3%), while the average treatment HbF value was 23.9 ± 7.2 % (median 22.9%, range 10.2 – 40.7%). All 67 children increased their HbF in response to hydroxyurea therapy (median 16.7%, range 5.0 – 28.8%). There was a modest but statistically significant correlation between the baseline and treatment HbF (r=0.66, p<.0001). The estimated effect of one unit change in baseline HbF on treatment HbF was 1.11 (95% CI of 0.78, 1.43). When baseline %HbF was analyzed according to the beta globin haplotype, the overall ANOVA had a p-value of 0.02, indicating a statistically significant influence. Further analysis confirmed associations previously identified in adults with SCA, i.e. children with at least one copy of the CAR haplotype had a lower baseline HbF (5.9% vs 8.4%, p=.05), while those with at least one copy of the Senegal haplotype had a higher baseline HbF (11.1% vs 6.7%, p<.001). When hydroxyurea MTD (treatment) HbF values were analyzed according to beta globin haplotype while adjusting for baseline HbF, however, the effect of beta globin haplotype was not statistically significant (p=.13). Analyses of HbF according to alpha globin gene number revealed no statistically significant effects on either baseline or treatment HbF values. Taken together, these data support the hypothesis that beta globin haplotype significant influences baseline HbF values for children with SCA, but has no significant effects on hydroxyurea MTD HbF values. Accordingly, children with SCA should be offered hydroxyurea based solely on clinical indications, without consideration of baseline HbF or beta globin haplotype. Even children with low baseline HbF values or the CAR beta globin haplotype can respond to hydroxyurea therapy with an elevated %HbF. Future studies designed to identify genetic modifiers of treatment HbF values should focus on sequence polymorphisms in non-globin genes that have trans-acting effects on gamma globin gene expression.


Sign in / Sign up

Export Citation Format

Share Document