Procoagulant platelets: are they necrotic?

Blood ◽  
2010 ◽  
Vol 116 (12) ◽  
pp. 2011-2018 ◽  
Author(s):  
Shaun P. Jackson ◽  
Simone M. Schoenwaelder

AbstractApoptosis and necrosis represent distinct cell death processes that regulate mammalian development, physiology and disease. Apoptosis characteristically leads to the silent destruction and removal of cells in the absence of an inflammatory response. In contrast, necrotic cell death can induce physiologic inflammatory responses linked to tissue defense and repair. Although anucleate, platelets undergo programmed cell death, with apoptosis playing an important role in clearing effete platelets from the circulation. While it has long been recognized that procoagulant platelets exhibit characteristic features of dying cells, recent studies have demonstrated that platelet procoagulant function can occur independent of apoptosis. A growing body of evidence suggest that the biochemical, morphologic and functional changes underlying agonist-induced platelet procoagulant function are broadly consistent with cell necrosis, raising the possibility that distinct death pathways regulate platelet function and survival. In this article, we will discuss the mechanisms underlying apoptotic and necrotic cell death pathways and examine the evidence linking these pathways to the platelet procoagulant response. We will also discuss the potential contribution of these pathways to the platelet storage lesion and propose a simplified nomenclature to describe procoagulant platelets.

2014 ◽  
Vol 395 (10) ◽  
pp. 1163-1171 ◽  
Author(s):  
Pavel Davidovich ◽  
Conor J. Kearney ◽  
Seamus J. Martin

Abstract Microbial infection and tissue injury are well established as the two major drivers of inflammation. However, although it is widely accepted that necrotic cell death can trigger or potentiate inflammation, precisely how this is achieved still remains relatively obscure. Certain molecules, which have been dubbed ‘damage-associated molecular patterns’ (DAMPs) or alarmins, are thought to promote inflammation upon release from necrotic cells. However, the precise nature and relative potency of DAMPs, compared to conventional pro-inflammatory cytokines or pathogen-associated molecular patterns (PAMPs), remains unclear. How different modes of cell death impact on the immune system also requires further clarification. Apoptosis has long been regarded as a non-inflammatory or even anti-inflammatory mode of cell death, but recent studies suggest that this is not always the case. Necroptosis is a programmed form of necrosis that is engaged under certain conditions when caspase activation is blocked. Necroptosis is also regarded as a highly pro-inflammatory mode of cell death but there has been little explicit examination of this issue. Here we discuss the inflammatory implications of necrosis, necroptosis and apoptosis and some of the unresolved questions concerning how dead cells influence inflammatory responses.


Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
CM Strüh ◽  
S Jäger ◽  
CM Schempp ◽  
T Jakob ◽  
A Scheffler ◽  
...  

2007 ◽  
Vol 26 (6) ◽  
pp. 769-771 ◽  
Author(s):  
Tom Vanden Berghe ◽  
Wim Declercq ◽  
Peter Vandenabeele

APOPTOSIS ◽  
2010 ◽  
Vol 16 (2) ◽  
pp. 114-126 ◽  
Author(s):  
Jee-Youn Kim ◽  
Yong-Jun Kim ◽  
Sun Lee ◽  
Jae-Hoon Park

2005 ◽  
Vol 168 (4) ◽  
pp. 545-551 ◽  
Author(s):  
Xavier Saelens ◽  
Nele Festjens ◽  
Eef Parthoens ◽  
Isabel Vanoverberghe ◽  
Michael Kalai ◽  
...  

Cell death is an intrinsic part of metazoan development and mammalian immune regulation. Whereas the molecular events orchestrating apoptosis have been characterized extensively, little is known about the biochemistry of necrotic cell death. Here, we show that, in contrast to apoptosis, the induction of necrosis does not lead to the shut down of protein synthesis. The rapid drop in protein synthesis observed in apoptosis correlates with caspase-dependent breakdown of eukaryotic translation initiation factor (eIF) 4G, activation of the double-stranded RNA-activated protein kinase PKR, and phosphorylation of its substrate eIF2-α. In necrosis induced by tumor necrosis factor, double-stranded RNA, or viral infection, de novo protein synthesis persists and 28S ribosomal RNA fragmentation, eIF2-α phosphorylation, and proteolytic activation of PKR are absent. Collectively, these results show that, in contrast to apoptotic cells, necrotic dying cells retain the opportunity to synthesize proteins.


2016 ◽  
Vol Volume 11 ◽  
pp. 6161-6168 ◽  
Author(s):  
Alaa A Fadhel ◽  
Xiling Yue ◽  
Ebrahim H Ghazvini Zadeh ◽  
Mykhailo Bondar ◽  
Kevin D Belfield

Sign in / Sign up

Export Citation Format

Share Document