scholarly journals Activation of the unfolded protein response is associated with impaired granulopoiesis in transgenic mice expressing mutant Elane

Blood ◽  
2011 ◽  
Vol 117 (13) ◽  
pp. 3539-3547 ◽  
Author(s):  
Suparna Nanua ◽  
Mark Murakami ◽  
Jun Xia ◽  
David S. Grenda ◽  
Jill Woloszynek ◽  
...  

Abstract Severe congenital neutropenia (SCN) is an inborn disorder of granulopoiesis that in many cases is caused by mutations of the ELANE gene, which encodes neutrophil elastase (NE). Recent data suggest a model in which ELANE mutations result in NE protein misfolding, induction of endoplasmic reticulum (ER) stress, activation of the unfolded protein response (UPR), and ultimately a block in granulocytic differentiation. To test this model, we generated transgenic mice carrying a targeted mutation of Elane (G193X) reproducing a mutation found in SCN. The G193X Elane allele produces a truncated NE protein that is rapidly degraded. Granulocytic precursors from G193X Elane mice, though without significant basal UPR activation, are sensitive to chemical induction of ER stress. Basal and stress granulopoiesis after myeloablative therapy are normal in these mice. Moreover, inaction of protein kinase RNA-like ER kinase (Perk), one of the major sensors of ER stress, either alone or in combination with G193X Elane, had no effect on basal granulopoiesis. However, inhibition of the ER-associated degradation (ERAD) pathway using a proteosome inhibitor resulted in marked neutropenia in G193X Elane. The selective sensitivity of G913X Elane granulocytic cells to ER stress provides new and strong support for the UPR model of disease patho-genesis in SCN.

2010 ◽  
Vol 298 (6) ◽  
pp. G820-G832 ◽  
Author(s):  
Michael A. McGuckin ◽  
Rajaraman D. Eri ◽  
Indrajit Das ◽  
Rohan Lourie ◽  
Timothy H. Florin

Endoplasmic reticulum (ER) stress is a phenomenon that occurs when excessive protein misfolding occurs during biosynthesis. ER stress triggers a series of signaling and transcriptional events known as the unfolded protein response (UPR). The UPR attempts to restore homeostasis in the ER but if unsuccessful can trigger apoptosis in the stressed cells and local inflammation. Intestinal secretory cells are susceptible to ER stress because they produce large amounts of complex proteins for secretion, most of which are involved in mucosal defense. This review focuses on ER stress in intestinal secretory cells and describes how increased protein misfolding could occur in these cells, the process of degradation of misfolded proteins, the major molecular elements of the UPR pathway, and links between the UPR and inflammation. Evidence is reviewed from mouse models and human inflammatory bowel diseases that ties ER stress and activation of the UPR with intestinal inflammation, and possible therapeutic approaches to ameliorate ER stress are discussed.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 314-314
Author(s):  
Mark Murakami ◽  
Jill Woloszynek ◽  
Jun Xia ◽  
Fulu Liu ◽  
Daniel Link

Abstract Severe congenital neutropenia (SCN) is an inborn disorder of granulopoiesis characterized by chronic neutropenia, a block in granulocytic differentiation at the promyelocyte/myelocyte stage, and a marked propensity to develop acute myeloid leukemia. Most cases of SCN are associated with germline heterozygous mutations of ELA2, encoding neutrophil elastase (NE). To date, 59 different, mostly missense, mutations of ELA2 have been reported. A unifying mechanism by which all of the different ELA2 mutants disrupt granulopoiesis is lacking. We and others previously proposed a model in which the ELA2 mutations result in NE protein misfolding, induction of the unfolded protein response (UPR), and ultimately apoptosis of granulocytic precursors. Testing this (and other) models has been limited by the rarity of SCN and difficulty in obtaining clinical samples for testing. Herein, we report the preliminary description of a novel transgenic mouse line that expresses G192X Ela2, reproducing the G193X ELA2 mutation found in some patients with SCN. The G192X mutation was introduced into the murine Ela2 locus by homologous recombination in embryonic stem cells. Heterozygous or homozygous G192 Ela2 “knock-in” mice were healthy with no apparent developmental defect. While expression of Ela2 mRNA was normal, no mature NE protein was detected in the neutrophils of homozygous G192X Ela2 mice. However, in granulocytic precursors (mainly promyelocytes/myelocytes) a small amount of heavily glycosylated mutant NE protein was detected. Together, these observations suggest that G192X NE protein is retained in the endoplasmic reticulum (ER) and rapidly degraded. Consistent with ER stress and induction of the UPR, a significant increase in BiP/GRP78 and ATF6 mRNA expression in mutant granulocytic precursors were observed. Surprisingly, G192X Ela2 mice have normal basal granulopoiesis. The number of circulating neutrophils, granulocytic differentiation in the bone marrow, and number and cytokine responsiveness of myeloid progenitors were comparable to wild type mice. In summary, the G192X Ela2 mice appear to reproduce the NE protein misfolding and UPR activation observed in human SCN granulocytic precursors. However, expression of G192X Ela2 is not sufficient to disrupt basal granulopoiesis in mice. Studies of stress granulopoiesis are underway.


2014 ◽  
Vol 25 (9) ◽  
pp. 1411-1420 ◽  
Author(s):  
Nobuhiko Hiramatsu ◽  
Carissa Messah ◽  
Jaeseok Han ◽  
Matthew M. LaVail ◽  
Randal J. Kaufman ◽  
...  

Endoplasmic reticulum (ER) protein misfolding activates the unfolded protein response (UPR) to help cells cope with ER stress. If ER homeostasis is not restored, UPR promotes cell death. The mechanisms of UPR-mediated cell death are poorly understood. The PKR-like endoplasmic reticulum kinase (PERK) arm of the UPR is implicated in ER stress–induced cell death, in part through up-regulation of proapoptotic CCAAT/enhancer binding protein homologous protein (CHOP). Chop−/− cells are partially resistant to ER stress–induced cell death, and CHOP overexpression alone does not induce cell death. These findings suggest that additional mechanisms regulate cell death downstream of PERK. Here we find dramatic suppression of antiapoptosis XIAP proteins in response to chronic ER stress. We find that PERK down-regulates XIAP synthesis through eIF2α and promotes XIAP degradation through ATF4. Of interest, PERK's down-regulation of XIAP occurs independently of CHOP activity. Loss of XIAP leads to increased cell death, whereas XIAP overexpression significantly enhances resistance to ER stress–induced cell death, even in the absence of CHOP. Our findings define a novel signaling circuit between PERK and XIAP that operates in parallel with PERK to CHOP induction to influence cell survival during ER stress. We propose a “two-hit” model of ER stress–induced cell death involving concomitant CHOP up-regulation and XIAP down-regulation both induced by PERK.


2018 ◽  
Author(s):  
Rolf M. Schmidt ◽  
Sebastian Schuck

ABSTRACTMisfolded proteins in the endoplasmic reticulum (ER) activate the unfolded protein response (UPR), which enhances protein folding to restore homeostasis. Additional pathways respond to ER stress, but how they help counteract protein misfolding is incompletely understood. Here, we develop a titratable system for the induction of ER stress in yeast to enable a genetic screen for factors that augment stress resistance independently of the UPR. We identify the proteasome biogenesis regulator Rpn4 and show that it cooperates with the UPR. Rpn4 abundance increases during ER stress, first by a post-transcriptional, then by a transcriptional mechanism. Induction of RPN4 transcription is triggered by cytosolic mislocalization of secretory proteins, is mediated by multiple signaling pathways and accelerates clearance of misfolded proteins from the cytosol. Thus, Rpn4 and the UPR are complementary elements of a modular cross-compartment response to ER stress.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Rolf M Schmidt ◽  
Julia P Schessner ◽  
Georg HH Borner ◽  
Sebastian Schuck

Misfolded proteins in the endoplasmic reticulum (ER) activate the unfolded protein response (UPR), which enhances protein folding to restore homeostasis. Additional pathways respond to ER stress, but how they help counteract protein misfolding is incompletely understood. Here, we develop a titratable system for the induction of ER stress in yeast to enable a genetic screen for factors that augment stress resistance independently of the UPR. We identify the proteasome biogenesis regulator Rpn4 and show that it cooperates with the UPR. Rpn4 abundance increases during ER stress, first by a post-transcriptional, then by a transcriptional mechanism. Induction of RPN4 transcription is triggered by cytosolic mislocalization of secretory proteins, is mediated by multiple signaling pathways and accelerates clearance of misfolded proteins from the cytosol. Thus, Rpn4 and the UPR are complementary elements of a modular cross-compartment response to ER stress.


2021 ◽  
Vol 9 (4) ◽  
pp. 705
Author(s):  
Manal H. Alshareef ◽  
Elizabeth L. Hartland ◽  
Kathleen McCaffrey

The unfolded protein response (UPR) is a homeostatic response to endoplasmic reticulum (ER) stress within eukaryotic cells. The UPR initiates transcriptional and post-transcriptional programs to resolve ER stress; or, if ER stress is severe or prolonged, initiates apoptosis. ER stress is a common feature of bacterial infection although the role of the UPR in host defense is only beginning to be understood. While the UPR is important for host defense against pore-forming toxins produced by some bacteria, other bacterial effector proteins hijack the UPR through the activity of translocated effector proteins that facilitate intracellular survival and proliferation. UPR-mediated apoptosis can limit bacterial replication but also often contributes to tissue damage and disease. Here, we discuss the dual nature of the UPR during infection and the implications of UPR activation or inhibition for inflammation and immunity as illustrated by different bacterial pathogens.


2021 ◽  
Vol 22 (5) ◽  
pp. 2567
Author(s):  
Yann S. Gallot ◽  
Kyle R. Bohnert

Skeletal muscle is an essential organ, responsible for many physiological functions such as breathing, locomotion, postural maintenance, thermoregulation, and metabolism. Interestingly, skeletal muscle is a highly plastic tissue, capable of adapting to anabolic and catabolic stimuli. Skeletal muscle contains a specialized smooth endoplasmic reticulum (ER), known as the sarcoplasmic reticulum, composed of an extensive network of tubules. In addition to the role of folding and trafficking proteins within the cell, this specialized organelle is responsible for the regulated release of calcium ions (Ca2+) into the cytoplasm to trigger a muscle contraction. Under various stimuli, such as exercise, hypoxia, imbalances in calcium levels, ER homeostasis is disturbed and the amount of misfolded and/or unfolded proteins accumulates in the ER. This accumulation of misfolded/unfolded protein causes ER stress and leads to the activation of the unfolded protein response (UPR). Interestingly, the role of the UPR in skeletal muscle has only just begun to be elucidated. Accumulating evidence suggests that ER stress and UPR markers are drastically induced in various catabolic stimuli including cachexia, denervation, nutrient deprivation, aging, and disease. Evidence indicates some of these molecules appear to be aiding the skeletal muscle in regaining homeostasis whereas others demonstrate the ability to drive the atrophy. Continued investigations into the individual molecules of this complex pathway are necessary to fully understand the mechanisms.


Sign in / Sign up

Export Citation Format

Share Document