scholarly journals Pomalidomide augments fetal hemoglobin production without the myelosuppressive effects of hydroxyurea in transgenic sickle cell mice

Blood ◽  
2011 ◽  
Vol 118 (4) ◽  
pp. 1109-1112 ◽  
Author(s):  
Steffen E. Meiler ◽  
Marlene Wade ◽  
Ferdane Kutlar ◽  
Shobha D. Yerigenahally ◽  
Yongjun Xue ◽  
...  

Abstract Pharmacologic induction of fetal hemoglobin (HbF) expression is an effective treatment strategy for sickle cell disease (SCD) and β-thalassemia. Pomalidomide is a potent structural analog of thalidomide and member of a new class of immunomodulatory drugs. Recent reports demonstrated that pomalidomide reduced or eliminated transfusion requirements in certain hematologic malignancies and induced HbF ex vivo in CD34+ progenitor cells from healthy and SCD donors. We investigated the effects of pomalidomide on erythropoiesis and hemoglobin synthesis in a transgenic mouse model of SCD. We found that 8 weeks of treatment with pomalidomide induced modest increases of HbF with similar efficacy as hydroxyurea. However, in stark contrast to hydroxyurea's myelosuppressive effects, pomalidomide augmented erythropoiesis and preserved bone marrow function. Surprisingly, combinatory therapy with both drugs failed to mitigate hydroxyurea's myelotoxic effects and caused loss of HbF induction. These findings support further evaluation of pomalidomide as a novel therapy for SCD.

2019 ◽  
Vol 28 (R1) ◽  
pp. R24-R30 ◽  
Author(s):  
Yasuhiro Ikawa ◽  
Annarita Miccio ◽  
Elisa Magrin ◽  
Janet L Kwiatkowski ◽  
Stefano Rivella ◽  
...  

Abstract Recently, gene therapy clinical trials have been successfully applied to hemoglobinopathies, such as sickle cell disease (SCD) and β-thalassemia. Among the great discoveries that led to the design of genetic approaches to cure these disorders is the discovery of the β-globin locus control region and several associated transcription factors, which determine hemoglobin switching as well as high-level, erythroid-specific expression of genes at the ß-globin locus. Moreover, increasing evidence shows that lentiviral vectors are efficient tools to insert large DNA elements into nondividing hematopoietic stem cells, showing reassuring safe integration profiles. Alternatively, genome editing could restore expression of fetal hemoglobin or target specific mutations to restore expression of the wild-type β-globin gene. The most recent clinical trials for β-thalassemia and SCD are showing promising outcomes: patients were able to discontinue transfusions or had reduced transfusion requirements. However, toxic myeloablation and the high cost of current ex vivo hematopoietic stem cell gene therapy platforms represent a barrier to a widespread application of these approaches. In this review, we summarize these gene therapy strategies and ongoing clinical trials. Finally, we discuss possible strategies to improve outcomes, reduce myeloablative regimens and future challenges to reduce the cost of gene therapy platform.


Blood ◽  
2003 ◽  
Vol 102 (4) ◽  
pp. 1529-1530 ◽  
Author(s):  
Mohamed Bradai ◽  
Mohand Tayeb Abad ◽  
Serge Pissard ◽  
Fatima Lamraoui ◽  
Laurent Skopinski ◽  
...  

Abstract Hydroxyurea (HU) enhances fetal hemoglobin (Hb) production. An increase in total Hb level has been repeatedly reported during HU treatment in patients with sickle cell disease and in several patients with β-thalassemia intermedia. Effects in patients with β-thalassemia major are controversial. We now report a marked elevation of total Hb levels with HU that permitted regular transfusions to be stopped in 7 children with transfusion-dependent β-thalassemia. The median follow-up was 19 ± 3 months (range, 13-21 months). We conclude that HU can eliminate transfusional needs in children with β-thalassemia major, which could be particularly useful in countries such as Algeria, where supplies of blood or chelating agents are limited.


Blood ◽  
2010 ◽  
Vol 115 (12) ◽  
pp. 2354-2363 ◽  
Author(s):  
Ersi Voskaridou ◽  
Dimitrios Christoulas ◽  
Antonios Bilalis ◽  
Eleni Plata ◽  
Konstantinos Varvagiannis ◽  
...  

The aim of this prospective study was to evaluate the long-term efficacy and safety of hydroxyurea (HU) in patients with sickle cell disease (SCD). Thirty-four patients with sickle cell anemia (hemoglobin S [HbS]/HbS), 131 with HbS/β0-thal, and 165 with HbS/β+-thal participated in this trial. HU was administered to 131 patients, whereas 199 patients were conventionally treated. The median follow-up period was 8 years for HU patients and 5 years for non-HU patients. HU produced a dramatic reduction in the frequency of severe painful crises, transfusion requirements, hospital admissions, and incidence of acute chest syndrome. The probability of 10-year survival was 86% and 65% for HU and non-HU patients, respectively (P = .001), although HU patients had more severe forms of SCD. The 10-year probability of survival for HbS/HbS, HbS/β 0-thal, and HbS/IVSI-110 patients was 100%, 87%, and 82%, respectively, for HU patients and 10%, 54%, and 66%, for non-HU patients. The multivariate analysis showed that fetal hemoglobin values at baseline and percentage change of lactate dehydrogenase between baseline and 6 months were independently predicted for survival in the HU group. These results highlight the beneficial effect of HU, which seems to modify the natural history of SCD and raise the issue of expanding its use in all SCD patients.


2020 ◽  
Vol 4 (18) ◽  
pp. 4560-4572
Author(s):  
Scott A. Peslak ◽  
Eugene Khandros ◽  
Peng Huang ◽  
Xianjiang Lan ◽  
Carly L. Geronimo ◽  
...  

Abstract Increasing fetal hemoglobin (HbF) provides clinical benefit in patients with sickle cell disease (SCD). We recently identified heme-regulated inhibitor (HRI, EIF2AK1), as a novel HbF regulator. Because HRI is an erythroid-specific protein kinase, it presents a potential target for pharmacologic intervention. We found that maximal HbF induction required >80% to 85% HRI depletion. Because it remains unclear whether this degree of HRI inhibition can be achieved pharmacologically, we explored whether HRI knockdown can be combined with pharmacologic HbF inducers to achieve greater HbF production and minimize potential adverse effects associated with treatments. Strongly cooperative HbF induction was observed when HRI depletion was combined with exposure to pomalidomide or the EHMT1/2 inhibitor UNC0638, but not to hydroxyurea. Mechanistically, reduction in the levels of the HbF repressor BCL11A reflected the cooperativity of HRI loss and pomalidomide treatment, whereas UNC0638 did not modulate BCL11A levels. In conjunction with HRI loss, pomalidomide maintained its HbF-inducing activity at 10-fold lower concentrations, in which condition there were minimal observed detrimental effects on erythroid cell maturation and viability, as well as fewer alterations in the erythroid transcriptome. When tested in cells from patients with SCD, combining HRI depletion with pomalidomide or UNC0638 achieved up to 50% to 60% HbF and 45% to 50% HbF, respectively, as measured by high-performance liquid chromatography, and markedly counteracted cell sickling. In summary, this study provides a foundation for the exploration of combining future small-molecule HRI inhibitors with additional pharmacologic HbF inducers to maximize HbF production and preserve erythroid cell functionality for the treatment of SCD and other hemoglobinopathies.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2203-2209 ◽  
Author(s):  
E Fibach ◽  
P Prasanna ◽  
GP Rodgers ◽  
D Samid

Abstract In both sickle cell (SS) anemia and beta-thalassemia (beta-thal), an increase in fetal hemoglobin (HbF) ameliorates the clinical symptoms of the underlying disease. Several pharmacologic agents have been used to elevate HbF levels in adults; however, concerns regarding adverse effects of the prevailing drugs raise an urgent need for other agents capable of stimulating HbF production. We show here that sodium phenylacetate (NaPA) and its precursor, sodium 4-phenylbutyrate (NaPB), can enhance HbF production in cultured erythroid progenitor derived from normal donors and patients with SS anemia or beta-thal, when used at pharmacologic concentrations. Treatment resulted in (1) reduced cell proliferation, (2) elevated hemoglobin (Hb) content per cell (mean cellular Hb [MCH]), and (3) an increased proportion of HbF produced, associated with elevated levels of gamma-globin mRNA. Moreover, the active phenyl-fatty acids, with NaPA as a prototype, potentiated HbF induction by other drugs of clinical interest, including hydroxyurea (HU), sodium butyrate, and 5-azacytidine (5AzaC). Efficacy could be further enhanced by introducing chlorine substituents at the phenyl ring to increase drug lipophilicity. Our findings indicate that NaPA and NaPB, both already proven safe and effective in treatment of children with urea cycle disorders, might benefit also patients with severe hemoglobinopathies. The two-phase liquid culture procedure used in this study should prove valuable in further studies exploring the mechanisms of HbF induction by these agents, and might provide an assay to predict patient response in the clinical setting.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 721-721
Author(s):  
Scott A. Peslak ◽  
Jeremy D. Grevet ◽  
Xianjiang Lan ◽  
Osheiza Abdulmalik ◽  
Junwei Shi ◽  
...  

Abstract Increasing fetal hemoglobin (HbF) provides significant clinical benefit for patients with sickle cell disease (SCD) and is a critical goal that is being pursued with a variety of pharmacologic strategies. Hydroxyurea (HU) is currently the only FDA-approved drug aimed at raising HbF for SCD patients but is limited in its efficacy. Recent work in our laboratory utilizing a protein kinase-domain focused CRISPR-Cas9 based genetic screen identified heme-regulated inhibitor (HRI), an erythroid-specific protein kinase, as a novel HbF regulator (Grevet et al., Science 361:6399, 285-290). Depleting HRI in a human erythroid cell line and primary human erythroid cultures significantly raised HbF levels. Besides HU, several compounds have been recently identified as in vitro HbF inducers, including pomalidomide, a third-generation imide, and UNC0638, an EHMT 1/2 histone methyltransferase inhibitor. While all these approaches induce HbF in vitro, it remains to be seen whether these would achieve sufficient levels of HbF induction in patients when used as single agents. Although the specific mechanisms by which HRI, HU, pomalidomide and UNC0638 regulate HbF remain to be fully resolved, we hypothesized that they might work in distinct pathways, and that by combining them might improve effect size and diminish potential adverse effects on erythroid cell maturation and viability. We utilized a three-stage in vitro culture system that recapitulates normal erythropoiesis by terminal differentiation of adult CD34+ hematopoietic cells. Primary human CD34+ cells were treated with select pharmacologic inducers of HbF, including hydroxyurea, pomalidomide, or UNC0638, in combination with shRNA lentiviral knockdown of HRI. HbF levels were assessed by RT-qPCR, Western blot, flow cytometry, and cation-exchange HPLC. We find that knockdown of HRI leads to significant HbF induction as expected. We further observed an inverse correlation between remaining HRI levels and HbF induction with maximal effect size requiring 85%-90% HRI depletion. HU displayed comparatively little activity and failed to increase the effects of HRI knockdown. However, treatment with pharmacologic levels of pomalidomide or UNC0638 combined with HRI depletion each showed greater than additive effects in HbF with levels reaching 25-30% HbF for UNC0638-treated and 30-40% HbF for pomalidomide-treated combinations, suggesting underlying cooperativity of HbF induction. RT-qPCR and Western blot analyses suggest that the diminished expression of the HbF repressor BCL11A accounts in large part for HbF induction in HRI knockdown samples, particularly when combined with pomalidomide treatment in which Bcl11A depletion was greater than 90%, while other HbF repressors such as LRF were unchanged. To determine whether HbF induction results in reduced sickle cell formation, we performed combination HRI depletion and HbF pharmacologic induction in primary CD34+ cells derived from sickle cell patients. HRI depletion in primary SCD cells showed a marked increase in HbF from baseline levels; in addition, significant cooperativity with pomalidomide and UNC0638 was observed, achieving 45-50% HbF for UNC0638-treated and 50-60% HbF for pomalidomide-treated drug combinations with no apparent detrimental effects on erythroid differentiation or maturation. Importantly, combination of HRI knockdown and HbF pharmacologic treatments markedly reduced in vitro sickling as measured by low-oxygen sickling assays, suggesting significant amelioration of the sickle cell phenotype in vitro. Overall, we find that the combination of HbF pharmacologic induction and shRNA-mediated HRI inhibition results in significant cooperative upregulation of HbF levels in both normal and sickle cell-derived primary human cells without impairing red cell maturation. We are currently exploring additional potential synergies with HbF regulators to determine the optimal modalities to maximize HbF induction. While no effective and specific HRI inhibitors are currently available, our work suggests that future small molecule inhibition of HRI may be combined with other pharmacotherapies to achieve significant, clinically meaningful HbF induction for the treatment of SCD and other hemoglobinopathies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (20) ◽  
pp. 5664-5670 ◽  
Author(s):  
Aisha L. Walker ◽  
Shirley Steward ◽  
Thad A. Howard ◽  
Nicole Mortier ◽  
Matthew Smeltzer ◽  
...  

Abstract Hydroxyurea has been shown to be efficacious for the treatment of sickle cell anemia (SCA), primarily through the induction of fetal hemoglobin (HbF). However, the exact mechanisms by which hydroxyurea can induce HbF remain incompletely defined, although direct transcriptional effects and altered cell cycle kinetics have been proposed. In this study, we investigated potential epigenetic and alternative molecular mechanisms of hydroxyurea-mediated HbF induction by examining methylation patterns within the Gγ-globin promoter and miRNA expression within primary CD71+ erythrocytes of patients with SCA, both at baseline before beginning hydroxyurea therapy and after reaching maximum tolerated dose (MTD). Using both cross-sectional analysis and paired-sample analysis, we found that the highly methylated Gγ-globin promoter was inversely correlated to baseline HbF levels, but only slightly altered by hydroxyurea treatment. Conversely, expression of several specific miRNAs was significantly increased after hydroxyurea treatment, and expression of miR-26b and miR-151-3p were both associated with HbF levels at MTD. The significant associations identified in these studies suggest that methylation may be important for regulation of baseline HbF, but not after hydroxyurea treatment, whereas changes in miRNA expression may be associated with hydroxyurea-mediated HbF induction. This study was registered at ClinicalTrials.gov (NCT00305175).


2021 ◽  
Author(s):  
◽  
Kaitly Woodard ◽  

Sickle cell disease (SCD) is caused by a mutation of the β-globin gene (HBB), resulting in abnormal hemoglobin molecules that polymerize when deoxygenated, forming “sickle” shaped red blood cells (RBCs). Sickle RBCs lead to anemia, multi-organ damage and pain crises, beginning the first year of life. The onset of symptoms coincides with the developmental switch of β-like globin gene expression from fetal stage γ-globin to adult stage β-globin, resulting in a shift from fetal hemoglobin (HbF, α2γ2) to adult hemoglobin (HbA, α2β2). Some individuals harbor rare genetic variants in the extended β-globin gene cluster that cause constitutively elevated postnatal HbF, a benign condition known as hereditary persistence of fetal hemoglobin (HPFH) which alleviates symptoms of co-inherited SCD. Previously, we showed that CRISPR-Cas9-mediated genome editing can recreate a naturally occurring HPFH variant in the γ-globin (HBG1 and HBG2) promoters. Disruption of a TGACC nucleotide motif within this region by Cas9-mediated non-homologous end joining in human erythroid cells or their progenitors caused induction of HbF by interfering with recruitment of the transcriptional repressor, BCL11A. This strategy results in potent HbF induction in human cells and is a promising therapeutic strategy. However, the efficiency of genome editing and the level of HbF induction required to arrest or reverse the pathologies of SCD are unknown. In this work, we investigated the utility of humanized mouse models for SCD to answer this question. We further characterized the genomic configurations of two models: Berkeley mice, which harbor multiple tandem copies of three separate transgenes encoding human α-globin, sickle β-globin (βS) and a segment of the locus control region (LCR) a powerful enhancer that drives high-level erythroid-specific expression of linked genes; and Townes mice, in which the endogenous α-globin gene is replaced by the homologous human gene and the endogenous β-globin gene is replaced by human γ-globin (γA) and βS-globin genes. Genome editing of human γ-globin promoter in the Berkeley mouse induced a massive DNA damage response and cell death caused by the accumulation of multiple double-stranded DNA breaks (DSB) within the highly repetitive human transgene. In contrast, it was possible to achieve high-level editing of the single copy human γ-globin gene in the Townes model. However, induction of HbF was approximately 10-fold less that what occurred after generating the same edits in human cells, possibly because the mouse model lacks essential non-coding DNA regulatory sequences. Together, these limitations rule out the Berkeley mouse for DSB-inducing gene-editing purposes and the Townes mouse for HbF induction by regulatory element targeting. Despite these limitations, we determined the Townes model to be a good candidate for a base editing strategy to directly alter the SCD mutation. This work sought to edit the sickle T to a G, resulting in the Hb G-Makassar variant suspected to be benign and non-sickling. Recipient mice transplanted with successfully edited (55-60%) Townes HbSS Lin- cells show marked improvement in blood count values and splenomegaly. This Hb G-Makassar strategy allows for a better understanding of the levels of hematopoietic stem cell editing required to correct the SCD phenotype.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3557-3557
Author(s):  
Scott A. Peslak ◽  
Xianjiang Lan ◽  
Eugene Khandros ◽  
Peng Huang ◽  
Jennifer A. Yano ◽  
...  

Increasing fetal hemoglobin (HbF) provides significant clinical benefit for patients with sickle cell disease (SCD) and is a critical goal that is being pursued with a variety of pharmacologic strategies. Hydroxyurea (HU) is currently the only FDA-approved drug aimed at raising HbF but is limited in its efficacy. Recent work in our laboratory identified heme-regulated inhibitor (HRI), an erythroid-specific protein kinase, as a novel HbF regulator (Grevet et al., Science 2018). Depleting HRI in primary human erythroid cells significantly raised HbF levels; however, maximal HbF induction by HRI knockdown required at least 80-85% HRI depletion. It is currently unknown whether this degree of HRI inhibition can be achieved pharmacologically. Besides HU, several compounds have been recently identified as in vitro HbF inducers, including pomalidomide, a third-generation imide, and UNC0638, an EHMT 1/2 histone methyltransferase inhibitor. We therefore set out to test whether combining HRI depletion with pharmacologic HbF inducers would cooperatively increase HbF levels and diminish potential adverse effects on erythroid cell maturation and viability. We performed three-stage in vitro culture of human CD34+ cells treated with select pharmacologic inducers of HbF, including HU, pomalidomide, or UNC0638, in combination with shRNA knockdown of HRI. HbF levels were assessed by RT-qPCR, Western blot, flow cytometry, and HPLC. We found that treatment with HU displayed comparatively little activity and failed to increase effects of HRI knockdown. However, treatment with UNC0638 combined with HRI depletion showed greater than additive effects on HbF with levels reaching 25-30% HbF, while HRI depletion combined with pomalidomide treatment showed the highest levels of cooperativity, reaching 30-40% HbF. Combination of HRI depletion and HbF pharmacologic inducers showed minimal effects on the erythroid transcriptome by RNA-Seq and did not significantly impair erythroid maturation. Intriguingly, dose-titration experiments indicated that HRI knockdown sensitizes erythroid cells to low doses of pomalidomide, maintaining HbF levels of greater than 40% in HRI-depleted samples despite a ten-fold decrease in pomalidomide concentration. Diminished expression of the HbF repressor BCL11A accounted in large part for HbF induction in HRI knockdown samples, particularly when combined with pomalidomide treatment in which BCL11A depletion exceeded 90%, while other HbF repressors such as LRF were unchanged. We will present RNASeq analyses aimed at elucidating mechanisms of HRI cooperativity. Finally, we found that HRI depletion in SCD patient-derived cells showed significant cooperativity with pomalidomide and UNC0638, achieving 45-50% HbF for UNC0638-treated and 50-60% HbF for pomalidomide-treated drug combinations. Importantly, combination of HRI knockdown and HbF pharmacologic treatments markedly reduced in vitro sickling as measured by low-oxygen sickling assays, suggesting significant amelioration of the sickle cell phenotype. In sum, we find that dual targeting of HbF induction via HRI inhibition and pharmacologic inducers results in successful cooperative upregulation of HbF levels in both normal and SCD primary human cells without impairing red cell maturation. Furthermore, our data suggest that dose titration of HbF inducers combined with HRI depletion could maximize HbF induction while potentially reducing off-target effects. Moreover, HRI is an attractive target for HbF induction as it is expressed in an erythroid-specific manner. While no specific HRI inhibitors are currently available, our work suggests that future small molecule inhibitors of HRI may be combined with other pharmacotherapies to achieve significant, clinically meaningful HbF induction for the treatment of SCD and other hemoglobinopathies. Disclosures Abdulmalik: The Children's Hospital of Philadelphia: Patents & Royalties: Provisional Patent. Blobel:Bioverativ: Research Funding; Pfizer: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document