scholarly journals Macrophages prevent human red blood cell reconstitution in immunodeficient mice

Blood ◽  
2011 ◽  
Vol 118 (22) ◽  
pp. 5938-5946 ◽  
Author(s):  
Zheng Hu ◽  
Nico Van Rooijen ◽  
Yong-Guang Yang

Abstract An animal model supporting human erythropoiesis will be highly valuable for assessing the biologic function of human RBCs under physiologic and disease settings, and for evaluating protocols of in vitro RBC differentiation. Herein, we analyzed human RBC reconstitution in NOD/SCID or NOD/SCID/γc−/− mice that were transplanted with human CD34+ fetal liver cells and fetal thymic tissue. Although a large number of human CD45−CD71+ nucleated immature erythroid cells were detected in the bone marrow, human RBCs were undetectable in the blood of these mice. Human RBCs became detectable in blood after macrophage depletion but disappeared again after withdrawal of treatment. Furthermore, treatment with human erythropoietin and IL-3 significantly increased human RBC reconstitution in macrophage-depleted, but not control, humanized mice. Significantly more rapid rejection of human RBCs than CD47-deficient mouse RBCs indicates that mechanisms other than insufficient CD47-SIRPα signaling are involved in human RBC xenorejection in mice. All considered, our data demonstrate that human RBCs are highly susceptible to rejection by macrophages in immunodeficient mice. Thus, strategies for preventing human RBC rejection by macrophages are required for using immunodeficient mice as an in vivo model to study human erythropoiesis and RBC function.

Blood ◽  
1999 ◽  
Vol 94 (8) ◽  
pp. 2686-2695 ◽  
Author(s):  
Franck E. Nicolini ◽  
Tessa L. Holyoake ◽  
Johanne D. Cashman ◽  
Pat P.Y. Chu ◽  
Karen Lambie ◽  
...  

Comparative measurements of different types of hematopoietic progenitors present in human fetal liver, cord blood, and adult marrow showed a large (up to 250-fold), stage-specific, but lineage-unrestricted, amplification of the colony-forming cell (CFC) compartment in the fetal liver, with a higher ratio of all types of CFC to long-term culture-initiating cells (LTC-IC) and a lower ratio of total (mature) cells to CFC. Human fetal liver LTC-IC were also found to produce more CFC in LTC than cord blood or adult marrow LTC-IC, and more of the fetal liver LTC-IC–derived CFC were erythroid. Human fetal liver cells regenerated human multilineage hematopoiesis in NOD/SCID mice with the same kinetics as human cord blood and adult marrow cells, but sustained a high level of terminal erythropoiesis not seen in adult marrow-engrafted mice unless exogenous human erythropoietin (Epo) was injected. This may be due to a demonstrated 10-fold lower activity of murine versus human Epo on human cells, sufficient to distinguish between a differential Epo sensitivity of fetal and adult erythroid precursors. Examination of human LTC-IC, CFC, and erythroblasts generated either in NOD/SCID mice and/or in LTC showed the types of cells and hemoglobins produced also to reflect their ontological origin, regardless of the environment in which the erythroid precursors were generated. We suggest that ontogeny may affect the behavior of cells at many stages of hematopoietic cell differentiation through key changes in shared signaling pathways.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3723-3723
Author(s):  
Zheng Hu ◽  
Yong-Guang Yang

Abstract Abstract 3723 An animal model supporting human erythropoiesis will be highly valuable for assessing the biological function of human RBCs under physiological and disease settings, and for evaluating protocols of in vitro RBC differentiation from human embryonic stem cells. Although immunodeficient mice on the NOD background have been widely used to study human hematopoietic stem cell function in vivo, the successful use of these mice in the study of human erythropoiesis and RBC function has not been reported. We have previously shown that co-transplantation of human fetal thymic tissue (under renal capsule) and CD34+ fetal liver cells (FLCs; i.v.) in NOD/SCID or NOD/SCID/γc−/− mice results in the development of multilineage human hematopoietic cells. Here, we analyzed human RBC reconstitution in these humanized mice. Although a large number of human erythrocytes, which consisted predominantly of immature nucleated erythrocytes, were detected in the bone marrow of human fetal thymus/CD34+ FLC-grafted mice, human RBCs were undetectable in blood of these mice, even in those with nearly full human chimerism in peripheral blood mononuclear cells (PBMCs). Recipient mouse macrophage-mediated rejection is, at least, one of the major mechanisms responsible for the lack of human RBCs in these mice, as human RBCs became detectable in blood following macrophage depletion and disappeared again after withdrawal of treatment. Furthermore, treatment with human erythropoietin (EPO) and human IL-3 significantly increased human RBC reconstitution in mice that were depleted of macrophages. Like the human RBCs developed in the humanized mice, exogenously injected normal human RBCs were also rapidly rejected by macrophages in NOD/SCID mice. Taken together, our data demonstrate that human RBCs are highly susceptible to rejection by macrophages in immunodeficient mice. Thus, strategies for preventing human RBC rejection by macrophages are required for using immunodeficient mice as an in vivo model to study human erythropoiesis and RBC function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1393-1398 ◽  
Author(s):  
RK Akkina ◽  
JD Rosenblatt ◽  
AG Campbell ◽  
IS Chen ◽  
JA Zack

Abstract Gene therapy of human T-lymphocyte disorders, including acquired immunodeficiency syndrome (AIDS), would be greatly facilitated by the development of an in vivo system in which transduced human hematopoietic stem cells can be used to reconstitute the T-lymphoid compartment. Here we use the SCID-hu mouse as a recipient for human CD34+ hematopoietic progenitor cells transduced in vitro with a retroviral vector carrying the neomycin resistance gene (neoR). The transduced cells engraft and reconstitute the lymphoid compartments of the human thymus implant with as few as 5 x 10(4) CD34+ cells. The neoR gene was expressed at low levels in human thymocytes and there was no apparent effect on thymocyte differentiation as a result of vector transduction. Thus, this SCID-hu mouse system is the first in vivo model showing human thymopoiesis after transduction of exogenous vectors, and should allow preclinical testing of gene therapeutic reagents designed to function in human cells of the T-lymphoid lineage. Because human immunodeficiency virus type 1 infection induces depletion of human thymocytes in SCID-hu mice, this system may be particularly valuable in evaluating efficacy of gene therapies to combat AIDS.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1730-1730
Author(s):  
Lara Rossi ◽  
Rossella Manfredini ◽  
Francesco Bertolini ◽  
Davide Ferrari ◽  
Miriam Fogli ◽  
...  

Abstract Regulatory mechanisms governing homing and engraftment of hematopoietic stem cells (HSCs) involve a complex interplay between chemokines, cytokines, growth factors and adhesion molecules in the intricate architecture of bone marrow (BM) microenvironment. HSCs express P2Y and P2X receptors for extracellular nucleotides, which activation by ATP and UTP has been recently demonstrated (Lemoli et al. Blood. 2004) to produce potent stimulatory effects on HSCs. Moreover extracellular nucleotides are emerging as key factors of flogosis phenomena and related chemotactic responses of several cell types, such as dendritic cells, monocytes and endothelial cells. In this study we investigated the biologic activity of extracellular ATP and UTP and their capacity to cooperatively promote SDF-1 (stromal cell-derived factor-1)-stimulated cell chemotaxis. Low concentrations of UTP (10uM) significantly improved, in vitro, HSCs migration. Moreover, UTP inhibits CXCR4 down-regulation of migrating CD34+ cells and increased cell adhesion to fibronectin filaments. Furthermore, in vivo competitive repopulation assays showed that preincubation with UTP significantly improved the homing efficiency of human CD34+ HSCs in nonobese diabetic/severe combined immunodeficient mice. Inhibition assays with Pertussis Toxin from B. Pertussis blocked SDF-1- and UTP-dependent chemotactic responses, suggesting that Gαi proteins may provide a converging signal for CXCR4- and P2Y-activated transduction pathways. In addition, gene expression profiling of UTP-treated CD34+ cells and subsequent in vitro inhibition assays with Toxin B from C. Difficile suggest that RhoGTPase Rac2 and his downstream effectors ROCK1 and ROCK2 are involved in the UTP-promoted, SDF-1-dependent HSCs migration. Taken together, our data suggest that UTP may physiologically modulate HSC migration and homing to the BM, in concert with the chemotactic peptide SDF-1, via the activation of converging signaling transduction pathways between CXCR4 and P2Y receptors, involving Gαi proteins and RhoGTPases.


2016 ◽  
Vol 15 (4) ◽  
pp. NP35-NP43 ◽  
Author(s):  
Catalina Trejo-Becerril ◽  
Enrique Pérez-Cardenas ◽  
Blanca Gutiérrez-Díaz ◽  
Desiree De La Cruz-Sigüenza ◽  
Lucía Taja-Chayeb ◽  
...  

Background. Cell-free DNA circulates in cancer patients and induces in vivo cell transformation and cancer progression in susceptible cells. Based on this, we hypothesized that depletion of circulating DNA with DNAse I and a protease mix could have antitumor effects. Study design. The study aimed to demonstrate that DNAse I and a protease mix can degrade in vitro DNA and proteins from the serum of healthy individuals and cancer patients, and in vivo in serum of Wistar rats,. Moreover, the antitumor effect of the systemically administered enzyme mix treatmentwas evaluated in nude mice subcutaneously grafted with the human colon cancer cell line SW480. Results. The serum DNA of cancer patients or healthy individuals was almost completely degraded in vitro by the enzymatic treatment, but no degradation was found with the enzymes given separately. The intravenous administration of the enzymes led to significant decreases in DNA and proteins from rat serum. No antitumor effect was observed in immunodeficient mice treated with the enzymes given separately. In contrast, the animals that received both enzymes exhibited a marked growth inhibition of tumors, 40% of them having pathological complete response. Conclusion. This study demonstrated that systemic treatment with DNAse I and a protease mix in rats decreases DNA and proteins from serum and that this treatment has antitumor effects. Our results support the hypothesis that circulating DNA could have a role in tumor progression, which can be offset by depleting it. Further studies are needed to prove this concept.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2489-2497 ◽  
Author(s):  
J Vormoor ◽  
T Lapidot ◽  
F Pflumio ◽  
G Risdon ◽  
B Patterson ◽  
...  

Abstract Unseparated or Ficoll-Hypaque (Pharmacia, Piscataway, NJ)--fractionated human cord blood cells were transplanted into sublethally irradiated severe combined immunodeficient (SCID) mice. High levels of multilineage engraftment, including myeloid and lymphoid lineages, were obtained with 80% of the donor samples as assessed by DNA analysis, fluorescence-activated cell sorting (FACS), and morphology. In contrast to previous and concurrent studies with adult human bone marrow (BM), treatment with human cytokines was not required to establish high-level human cell engraftment, suggesting that neonatal cells either respond differently to the murine microenvironment or they provide their own cytokines in a paracrine fashion. Committed and multipotential myelo- erythroid progenitors were detected using in vitro colony assays and FACS analysis of the murine BM showed the presence of immature CD34+ cells. In addition, human hematopoiesis was maintained for at least 14 weeks providing further evidence that immature hematopoietic precursors had engrafted the murine BM. This in vivo model for human cord blood- derived hematopoiesis will be useful to gain new insights into the biology of neonatal hematopoietic cells and to evaluate their role in gene therapy. There is growing evidence that there are ontogeny-related changes in immature human hematopoietic cells, and therefore, the animal models we have developed for adult and neonatal human hematopoiesis provide useful tools to evaluate these changes in vivo.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1227-1227
Author(s):  
Kamaleldin E. Elagib ◽  
Ivailo S. Mihaylov ◽  
Lorrie L. Delehanty ◽  
Grant C. Bullock ◽  
Kevin D. Ouma ◽  
...  

Abstract Programming of megakaryocytic differentiation requires precise coordination of multiple signal transduction and transcription pathways. Previous in vivo and in vitro studies have implicated RUNX1 and GATA-1 as transcription factors that collaborate in the execution of this program. Analysis of the mechanism for the synergy of these two factors revealed induction of RUNX1 hyperphosphorylation by GATA-1 coexpression. A pharmacologic screen identified roscovitine as an inhibitor of the transcriptional cooperation, implicating a cyclin-dependent kinase (Cdk). A screen employing a panel of dominant-negative Cdk mutants identified Cdk9 as a critical component of the GATA-1-RUNX1 cooperation. In addition, HEXIM1, an endogenous Cdk9 inhibitor, similarly blocked transcriptional synergy. Furthermore, two kinase inhibitory compounds, DRB and flavopiridol, also blocked GATA-1-RUNX1 cooperation at concentrations specific for Cdk9 inhibition. Regarding the mechanism for GATA-1 induction of RUNX1 phosphorylation, coimmunoprecipitation experiments showed GATA-1 binding to both Cdk9 and cyclinT1. To examine the role of P-TEFb in primary megakaryocytic differentiation, human CD34+ cells in megakaryocytic cultures underwent treatment with 50 nM flavopiridol, a dose selective for Cdk9 inhibition. This treatment blocked megakaryocytic polyploidization while having no effect on the cell cycle properties of the non-megakaryocytic cells in the cultures. The treatment also impaired upregulation of CD41. Extending these findings to an in vivo model system, mice underwent treatment with daily low dose flavopiridol (5–7 mg/kg/day), a regimen previously shown to have no toxicity. Wild type C57BL/6 (wt BL/6) mice were compared with the ΔneoΔHS strain (GATA-1Lo) which has diminished GATA-1 expression in megakaryocytes. After only 1 week of treatment, the GATA-1Lo mice developed worsening thrombocytopenia associated with new-onset anemia, with several dying after 2 weeks of treatment. Flow cytometry on marrow from the treated GATA-1Lo mice revealed a marked expansion of abnormal megakaryocytes showing coexpression of CD71 plus CD41 and loss of polyploidization. Marrow and spleen histology showed extensive replacement by immature-appearing megakaryocytes with hypolobulated nuclei, as well as frequent pyknotic megakaryocytes. The control mice, flavopiridol treated wt BL/6 and saline treated GATA-1Lo, displayed none of these abnormalities. Additional experiments determined the flavopiridol effect on the GATA-1Lo mice to be completely reversible, with normalization of all parameters 2 weeks after ending treatment. In aggregate, these data implicate P-TEFb recruitment by GATA-1 in mediating cooperative activation of megakaryocytic promoters with RUNX1. This pathway may depend in part on the direct phosphorylation of RUNX1 by Cdk9. In mice, a synthetic lethal relationship between megakaryocytic GATA-1 deficiency and Cdk9 inhibition exists, manifesting as a fulminant but reversible megakaryocytic proliferative disorder reminiscent of the Down syndrome-associated megakaryocyte proliferations. A model is proposed in which P-TEFb, as a component of GATA-1-RUNX1 transcriptional complexes, plays an integral role in the specific programming of megakaryocytic differentiation, with particular importance in the unique cell cycle changes associated with this lineage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlos Noe Farfan-Morales ◽  
Carlos Daniel Cordero-Rivera ◽  
Juan Fidel Osuna-Ramos ◽  
Irma Eloisa Monroy-Muñoz ◽  
Luis Adrián De Jesús-González ◽  
...  

AbstractThe Dengue (DENV) and zika (ZIKV) virus infections are currently a public health concern. At present, there is no treatment or a safe and effective vaccine for these viruses. Hence, the development of new strategies as host-directed therapy is required. In this sense, Metformin (MET), an FDA-approved drug used for the treatment of type 2 diabetes, has shown an anti-DENV effect in vitro by activating AMPK and reducing HMGCR activity. In this study, MET treatment was evaluated during in vitro and in vivo ZIKV infection and compared to MET treatment during DENV infection. Our results demonstrated that MET has a broad in vitro antiviral spectrum. MET inhibited ZIKV infection in different cell lines, but it was most effective in inhibiting DENV and yellow fever virus (YFV) infection in Huh-7 cells. However, the drug failed to protect against ZIKV infection when AG129 immunodeficient mice were used as in vivo model. Interestingly, MET increased DENV-infected male mice's survival time, reducing the severe signs of the disease. Together, these findings indicate that, although MET was an effective antiviral agent to inhibit in vitro and in vivo DENV infection, it could only inhibit in vitro ZIKV infection.


Blood ◽  
2001 ◽  
Vol 97 (10) ◽  
pp. 3283-3291 ◽  
Author(s):  
Orit Kollet ◽  
Asaf Spiegel ◽  
Amnon Peled ◽  
Isabelle Petit ◽  
Tamara Byk ◽  
...  

Abstract Stem cell homing into the bone microenvironment is the first step in the initiation of marrow-derived blood cells. It is reported that human severe combined immunodeficient (SCID) repopulating cells home and accumulate rapidly, within a few hours, in the bone marrow and spleen of immunodeficient mice previously conditioned with total body irradiation. Primitive CD34+CD38−/lowCXCR4+ cells capable of engrafting primary and secondary recipient mice selectively homed to the bone marrow and spleen, whereas CD34−CD38−/lowLin− cells were not detected. Moreover, whereas freshly isolated CD34+CD38+/high cells did not home, in vivo stimulation with granulocyte colony-stimulating factor as part of the mobilization process, or in vitro stem cell factor stimulation for 2 to 4 days, potentiated the homing capabilities of cytokine-stimulated CD34+CD38+ cells. Homing of enriched human CD34+ cells was inhibited by pretreatment with anti-CXCR4 antibodies. Moreover, primitive CD34+CD38−/lowCXCR4+cells also homed in response to a gradient of human stromal cell-derived factor 1 (SDF-1), directly injected into the bone marrow or spleen of nonirradiated NOD/SCID mice. Homing was also inhibited by pretreatment of CD34+ cells with antibodies for the major integrins VLA-4, VLA-5, and LFA-1. Pertussis toxin, an inhibitor of signals mediated by Gαiproteins, inhibited SDF-1–mediated in vitro transwell migration but not adhesion or in vivo homing of CD34+ cells. Homing of human CD34+ cells was also blocked by chelerythrine chloride, a broad-range protein kinase C inhibitor. This study reveals rapid and efficient homing to the murine bone marrow by primitive human CD34+CD38−/lowCXCR4+cells that is integrin mediated and depends on activation of the protein kinase C signal transduction pathway by SDF-1.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2489-2497 ◽  
Author(s):  
J Vormoor ◽  
T Lapidot ◽  
F Pflumio ◽  
G Risdon ◽  
B Patterson ◽  
...  

Unseparated or Ficoll-Hypaque (Pharmacia, Piscataway, NJ)--fractionated human cord blood cells were transplanted into sublethally irradiated severe combined immunodeficient (SCID) mice. High levels of multilineage engraftment, including myeloid and lymphoid lineages, were obtained with 80% of the donor samples as assessed by DNA analysis, fluorescence-activated cell sorting (FACS), and morphology. In contrast to previous and concurrent studies with adult human bone marrow (BM), treatment with human cytokines was not required to establish high-level human cell engraftment, suggesting that neonatal cells either respond differently to the murine microenvironment or they provide their own cytokines in a paracrine fashion. Committed and multipotential myelo- erythroid progenitors were detected using in vitro colony assays and FACS analysis of the murine BM showed the presence of immature CD34+ cells. In addition, human hematopoiesis was maintained for at least 14 weeks providing further evidence that immature hematopoietic precursors had engrafted the murine BM. This in vivo model for human cord blood- derived hematopoiesis will be useful to gain new insights into the biology of neonatal hematopoietic cells and to evaluate their role in gene therapy. There is growing evidence that there are ontogeny-related changes in immature human hematopoietic cells, and therefore, the animal models we have developed for adult and neonatal human hematopoiesis provide useful tools to evaluate these changes in vivo.


Sign in / Sign up

Export Citation Format

Share Document