scholarly journals Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation

Blood ◽  
2012 ◽  
Vol 119 (12) ◽  
pp. 2768-2777 ◽  
Author(s):  
Shinsuke Takagi ◽  
Yoriko Saito ◽  
Atsushi Hijikata ◽  
Satoshi Tanaka ◽  
Takashi Watanabe ◽  
...  

Abstract In recent years, advances in the humanized mouse system have led to significantly increased levels of human hematopoietic stem cell (HSC) engraftment. The remaining limitations in human HSC engraftment and function include lymphoid-skewed differentiation and inefficient myeloid development in the recipients. Limited human HSC function may partially be attributed to the inability of the host mouse microenvironment to provide sufficient support to human hematopoiesis. To address this problem, we created membrane-bound human stem cell factor (SCF)/KIT ligand (KL)–expressing NOD/SCID/IL2rgKO (hSCF Tg NSG) mice. hSCF Tg NSG recipients of human HSCs showed higher levels of both human CD45+ cell engraftment and human CD45+CD33+ myeloid development compared with NSG recipients. Expression of hSCF/hKL accelerated the differentiation of the human granulocyte lineage cells in the recipient bone marrow. Human mast cells were identified in bone marrow, spleen, and gastrointestinal tissues of the hSCF Tg NSG recipients. This novel in vivo humanized mouse model demonstrates the essential role of membrane-bound hSCF in human myeloid development. Moreover, the hSCF Tg NSG humanized recipients may facilitate investigation of in vivo differentiation, migration, function, and pathology of human mast cells.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3419-3419
Author(s):  
Shinsuke Takagi ◽  
Yoriko Saito ◽  
Atsushi Hijikata ◽  
Satoshi Tanaka ◽  
Takashi Watanabe ◽  
...  

Abstract Abstract 3419 Recently, advances in xenograft models for human hemamtopoietic stem cells (HSCs), or the humanized mice, have begun to allow investigators to examine the differentiation of human hematopoietic and immune cells in vivo. However, lymphoid-skewed human hematopoietic development in the mouse bone marrow is one of the remaining limitations in the humanized mouse models. The inefficient human myeloid development could at least partly be attributed to the mouse microenvironment not fully supporting differentiation and maturation of human myeloid lineage. To overcome this problem, we focused on the role of membrane-bound human stem cell factor in supporting the maintenance of human HSCs and inducing the development of human myeloid cells and created human stem cell factor transgenic NOD/SCID/IL2rgKO (hSCF Tg NSG) mice. Transplantation of 5000–50000 cord blood-derived Lin-CD34+CD38- cells resulted in significantly higher engraftment of human CD45+ leukocytes at 3–6 months post-transplantation in the bone marrow, spleen, and peripheral blood of hSCF Tg NSG recipients compared with those of non-transgenic NSG recipients. The enhanced human CD45+ engraftment was most prominent in the bone marrow (hSCF Tg recipients: 98.0 +/− 1.3%, n= 15, non-Tg NSG controls: 75.3 +/− 7.3%, n=7). In the bone marrow, the frequency of human CD33+ myeloid cells within the total human CD45+ population was significantly higher in the hSCF Tg NSG recipients than in the non-Tg NSG recipients and constituted the majority of human hematopoietic cells (hSCF Tg recipients: 54.6 +/− 4.5%, n=15 and non-Tg NSG controls: 29.3 +/− 4.0%, n=7). Flow cytometric analysis demonstrated that the majority of engrafted human myeloid cells in the hSCF Tg recipient bone marrow were side-scatter high, HLA-DR negative granulocytes. Reflecting the effect of human SCF on the development of human mast cells, human c-Kit+CD203c+ mast cells were identified in the bone marrow, spleen, and gastrointestinal tracts of the hSCF Tg NSG recipients. Altogether, the in vivo humanized mouse model demonstrates the essential role of membrane-bound SCF in human myeloid development. The hSCF Tg NSG humanized mice may facilitate the in vivo investigation of human HSCs, myeloid progenitors and mature myeloid lineage. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 864-869 ◽  
Author(s):  
Michele Magni ◽  
Massimo Di Nicola ◽  
Liliana Devizzi ◽  
Paola Matteucci ◽  
Fabrizio Lombardi ◽  
...  

Abstract Elimination of tumor cells (“purging”) from hematopoietic stem cell products is a major goal of bone marrow–supported high-dose cancer chemotherapy. We developed an in vivo purging method capable of providing tumor-free stem cell products from most patients with mantle cell or follicular lymphoma and bone marrow involvement. In a prospective study, 15 patients with CD20+ mantle cell or follicular lymphoma, bone marrow involvement, and polymerase chain reaction (PCR)–detectable molecular rearrangement received 2 cycles of intensive chemotherapy, each of which was followed by infusion of a growth factor and 2 doses of the anti-CD20 monoclonal antibody rituximab. The role of rituximab was established by comparison with 10 control patients prospectively treated with an identical chemotherapy regimen but no rituximab. The CD34+ cells harvested from the patients who received both chemotherapy and rituximab were PCR-negative in 93% of cases (versus 40% of controls;P = .007). Aside from providing PCR-negative harvests, the chemoimmunotherapy treatment produced complete clinical and molecular remission in all 14 evaluable patients, including all 6 with mantle cell lymphoma (versus 70% of controls). In vivo purging of hematopoietic progenitor cells can be successfully accomplished in most patients with CD20+ lymphoma, including mantle cell lymphoma. The results depended on the activity of both chemotherapy and rituximab infusion and provide the proof of principle that in vivo purging is feasible and possibly superior to currently available ex vivo techniques. The high short-term complete-response rate observed suggests the presence of a more-than-additive antilymphoma effect of the chemoimmunotherapy combination used.


PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0138623 ◽  
Author(s):  
Michelle Escobedo-Cousin ◽  
Nicola Jackson ◽  
Raquel Laza-Briviesca ◽  
Linda Ariza-McNaughton ◽  
Martha Luevano ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 663-663
Author(s):  
Dorothy A. Sipkins ◽  
Xunbin Wei ◽  
Juwell W. Wu ◽  
Terry K. Means ◽  
Andrew D. Luster ◽  
...  

Abstract The organization of cellular niches has been shown to play a key role in regulating normal stem cell differentiation and regeneration, yet relatively little is known about the architecture of microenvironments that support malignant proliferation. Using dynamic in vivo confocal and multi-photon imaging, we show that the bone marrow contains unique anatomic regions defined by specialized endothelium. This vasculature expresses the adhesion molecule E-selectin and the chemoattractant SDF-1 in discrete, discontinuous areas that localize the homing and early engraftment of both leukemic and normal primitive hematopoietic cells. Real-time imaging of cell-cell interactions in SCID mice bone marrow was performed after injection of fluorescently-labeled leukemic and other malignant cell lines. Progressive scanning and optical sectioning through the marrow revealed the existence of unique, spatially-restricted vascular domains to which the majority of marrow-homing tumor cells rolled and arrested. Serial imaging of mice on days 3 – 14 demonstrated that leukemic (Nalm-6 pre-B ALL) extravasation and early proliferation were restricted to these vascular beds. To define the molecular basis of these homing interactions, in vivo labeling of key vascular cell adhesion molecules and chemokines using fluorescent antibodies was performed. We observed that while ICAM-1, VCAM-1, PECAM-1 and P-selectin were expressed diffusely throughout the marrow vasculature, the expression of E-selectin and the chemokine receptor CXCR4 ligand SDF-1 was distinctly limited to vessels that supported leukemic cell engraftment. In vivo co-localization experiments confirmed Nalm-6 binding was restricted to vascular beds expressing both E-selectin and SDF-1. In functional studies, disruption of E-selection had a modest effect on leukemic homing (<20% diminution), while pharmacologic blockade of CXCR4 decreased Nalm-6 binding to vessels by approximately 80%. To explore the normal function of this vascular niche, we next examined whether benign primitive hematopoietic cells might preferentially home to these same vascular microdomains. Fluorescently-labeled stem and progenitor cells (HSPC) isolated from donor balb/c mice were injected into recipient mice and imaging was performed at multiple time points. HSPC were found to adhere to the BM microvasculature in the same restricted domains. At 70 days post-injection, HSPC had extravasated, were persistent in these perivascular areas and had undergone cell division as assessed by dye dilution. Our findings show that these microdomains serve as vascular portals around which leukemic and hematopoietic stem cells engraft, suggesting that this molecularly distinct vasculature provides both a cancer and normal stem cell niche. Specialized vascular structures therefore appear to delineate a stem cell microenvironment that is exploited by malignancy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4815-4815
Author(s):  
Haruko Tashiro ◽  
Ryosuke Shirasaki ◽  
Yoko Oka ◽  
Tadashi Yamamoto ◽  
Nobu Akiyama ◽  
...  

Abstract Abstract 4815 Background and Aims: We reported that acute myelogenous leukemia blasts and chronic myelogenous leukemia cells converted to stromal myofibroblasts to create an environment for the proliferation of leukemic cells in vitro and also in a non-obese diabetes/ severe combined immunodeficiency (NOD/SCID) murine bone-marrow in vivo. In normal hematopoiesis, hematopoietic stem cell (HSC) and stromal immature mesenchymal stem cell (MSC) are speculated to have a cross-talk, and some reports indicate that the HSC generates MSC, and also a specific fraction of MSC shares similar molecular expressions to that of HSC. We made a hypothesis that HSC might be generated from MSC. To make clear this issue, expression cloning was performed to isolate a molecule that stimulated bone-marrow stromal myofibroblasts to express hematopoietic stem cell marker, CD34. And, we also observed the effect of the isolated molecule to an adult human dermal fibroblast (HDF). Materials and Methods: cDNA-expression library was constructed using PHA-P-stimulated normal human blood lymphocytes, and the prepared plasmids were transfected to COS7 cells. After 3 days of culture, supernatants were added to the normal human bone-marrow-derived myofibroblasts (final 10%), and cells were further cultured for one week. RNA was extracted from the cultured myofibroblasts, and cDNA was synthesized. Positive clones were selected on CD34-expression with reverse transcription-polymerase chain reaction, and a single clone was isolated. The purified protein from the isolated single clone was added to HDF-culture, and the morphological changes and the expression of specific hematopoiesis-related proteins were analyzed. Results and Discussion: Isolated single clone was human interleukin 1β (IL-1β). When the purified IL-1β protein was added to the bone-marrow-derived myofibroblast cultures, cell growth was increased, and up-regulation of the expression of several hematopoietic specific proteins, including cytokine receptors and transcription factor SCL, was observed. Based on these observations, we determined the effect of IL-1β to HDF. When HDFs were cultured with human IL-1β for 3 weeks, the expression of granulocyte colony-stimulating factor (G-CSF)-receptor, and SCL was increased. When these IL-1β-stimulated cells were cultured in a non-coated dish, cells were floating, and budding of the cells was also observed. When HDF were cultured with IL-1β for 3 weeks, and then G-CSF and erythropoietin were added to the cultures, expression of transcription factor GATA-1 and CEBPA was significantly increased after one week. These observations indicate that IL-1β can stimulate to induce HDF toward hematopoietic cells. Now we determine the precise actions of human IL-1β to HDF using NOD/SCID transplantation model in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4011-4011
Author(s):  
Ji-Young Lim ◽  
Gyeongsin Park ◽  
Hyewon Youn ◽  
Eun-Young Choi ◽  
Dae-Chul Jeong ◽  
...  

Abstract Abstract 4011 Graft-versus-host disease (GVHD) is a common complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with anti-inflammatory activity. MyD88 is a cytoplasmic adaptor molecule essential for integrating and transducing the signals generated by the toll-like receptor (TLR) family. Activation of inflammatory signaling through MyD88, presumably through ligation of multiple TLRs, plays a key role in the expansion of MDSCs. We therefore investigated how the MyD88-dependent expansion of MDSCs from donor bone marrow (BM) contributes to protection of acute GVHD. To test this, we employed an intestinal GVHD murine model, C57BL/6 (H-2b) → B6D2F1 (H-2b/d), which differs at major and minor histocompatibility loci. Lethally irradiated recipient mice were transplanted with wild-type (WT) or MyD88 knock out (KO) mice T cell-depleted (TCD)-BM together with WT spleen T cells. Morbidity and mortality of GVHD was significantly worse in recipients of MyD88 KO TCD-BM with higher intestinal pathologic grading. Animals that underwent syngeneic HSCT did not show early mortality regardless of presence of MyD88 in BM, which ruled out myelosuppression-associated toxicity. The expression of Gr-1+CD11b+ in blood, mesenteric lymph nodes and liver on day 13 was significantly reduced in the recipients of MyD88 KO TCD-BM compared with those of WT TCD-BM while the percentage of donor T cells infiltrating colon and liver was significantly higher. In parallel, the percentages of donor T cells to undergo apoptosis in response to alloantigens in vivo were significantly decreased in recipients of MyD88 KO TCD-BM. Injection of MDSCs from BM of non-tumor bearing donor markedly inhibited GVHD lethality in recipients of MyD88 KO TCD-BM. Moreover, in vivo administration of lipopolysaccharide (LPS), a TLR ligand, to donor mice expanded GR-1+CD11b+ in BM with enhanced expression of MyD88 mRNA. Recipients of TCD-BM from WT mice injected LPS showed attenuated GVHD severity as measured by weight loss and survival compared to those of TCD-BM from WT mice injected diluent. In summary, MyD88-dependent expansion of GR-1+CD11b+ population from donor TCD-BM appears to be critical for survival after allo-HSCT. Incomplete expansion of GR-1+CD11b+ population in target organs correlates with decreased apoptosis and increased infiltration of donor T cells into the target organs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1169-1169
Author(s):  
Maren Weisser ◽  
Kerstin B. Kaufmann ◽  
Tomer Itkin ◽  
Linping Chen-Wichmann ◽  
Tsvee Lapidot ◽  
...  

Abstract Reactive oxygen species (ROS) have been implicated in the regulation of stemness of hematopoietic stem cells (HSC). HSC with long-term repopulating capabilities are characterized by low ROS levels, whereas increased ROS levels correlate with lineage specification and differentiation. Several tightly regulated sources of ROS production are well known among which are the NADPH oxidases (Nox). HSC are known to express Nox1, Nox2 and Nox4, however, their role in maintenance of stem cell potential or in the activation of differentiation programs are poorly understood. While Nox2 is activated in response to various extrinsic and intrinsic stimuli, mainly during infection and inflammation, Nox4 is constitutively active and is considered to be responsible for steady-state ROS production. Consequently, Nox4 deficiency might lower ROS levels at steady-state hematopoiesis and thereby could have an impact on HSC physiology. In this work we studied HSC homeostasis in Nox4 knock-out mice. Analysis of the hematopoietic stem and progenitor cell (HSPC) pool in the bone marrow (BM) revealed no significant differences in the levels of Lineage marker negative (Lin-) Sca-1+ ckit+ (LSK) and LSK-SLAM (LSK CD150+ CD48-) cells in Nox4 deficient mice compared to wild type (WT) C57BL/6J mice. HSPC frequency upon primary and secondary BM transplantation was comparable between Nox4 deficient and WT mice. In addition, the frequency of colony forming cells in the BM under steady-state conditions did not differ between both mouse groups. However, Nox4 deficient mice possess more functional HSCs as observed in in vivo competitive repopulating unit (CRU) assays. Lin- cells derived from Nox4 knock out (KO) mice showed an increased CRU frequency and superior multilineage engraftment upon secondary transplantation. Surprisingly, ROS levels in different HSPC subsets of NOX4 KO mice were comparable to WT cells, implying that the absence of Nox4 in HSCs does not have a major intrinsic impact on HSC physiology via ROS. Therefore, the increased levels of functional HSCs observed in our studies may suggest a contribution of the BM microenvironment to steady-state hematopoiesis in the BM of Nox4 KO animals. Recent observations suggest a regulation of the BM stem cell pool by BM endothelial cells, in particular by the permeability state of the blood-bone marrow-barrier (Itkin T et al., ASH Annual Meeting Abstracts, 2012). Endothelial cells interact with HSCs predominantly via paracrine effects and control stem cell retention, egress and homing as well as stem cell activation. As Nox4 is highly expressed in endothelial cells and is involved in angiogenesis, we reasoned that the absence of NOX4 could affect HSC homeostasis through altered BM endothelium properties and barrier permeability state. Indeed, in preliminary assays we found reduced short-term homing of BM mononuclear cells into the BM of Nox4 deficient mice as compared to wild type hosts. Furthermore, in vivo administration of Evans Blue dye revealed reduced dye penetration into Nox4-/- BM compared to wild type mice upon intravenous injection. Taken together, these data indicate a reduced endothelial permeability in Nox4 KO mice. Ongoing experiments aim at further characterization of the Nox4-/- phenotype in BM sinusoidal and arteriolar endothelial cells, the impact of Nox4 deletion on BM hematopoietic and mesenchymal stem cells, and in deciphering the role of Nox4 in the bone marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2476-2476
Author(s):  
Kasia Mierzejewska ◽  
Ewa Suszynska ◽  
Sylwia Borkowska ◽  
Malwina Suszynska ◽  
Maja Maj ◽  
...  

Abstract Background Hematopoietic stem/progenitor cells (HSPCs) are exposed in vivo to several growth factors, cytokines, chemokines, and bioactive lipids in bone marrow (BM) in addition to various sex hormones circulating in peripheral blood (PB). It is known that androgen hormones (e.g., danazol) is employed in the clinic to treat aplastic anemia patients. However, the exact mechanism of action of sex hormones secreted by the pituitary gland or gonads is not well understood. Therefore, we performed a complex series of experiments to address the influence of pregnant mare serum gonadotropin (PMSG), luteinizing hormone (LH), follicle-stimulating hormone (FSH), androgen (danazol) and prolactin (PRL) on murine hematopoiesis. In particular, from a mechanistic view we were interested in whether this effect depends on stimulation of BM-residing stem cells or is mediated through the BM microenvironment. Materials and Methods To address this issue, normal 2-month-old C57Bl6 mice were exposed or not to daily injections of PMSG (10 IU/mice/10 days), LH (5 IU/mice/10 days), FSH (5 IU/mice/10 days), danazol (4 mg/kg/10 days) and PRL (1 mg/day/5days). Subsequently, we evaluated changes in the BM number of Sca-1+Lin–CD45– that are precursors of long term repopulating hematopoietic stem cells (LT-HSCs) (Leukemia 2011;25:1278–1285) and bone forming mesenchymal stem cells (Stem Cell & Dev. 2013;22:622-30) and Sca-1+Lin–CD45+ hematopoietic stem/progenitor cells (HSPC) cells by FACS, the number of clonogenic progenitors from all hematopoietic lineages, and changes in peripheral blood (PB) counts. In some of the experiments, mice were exposed to bromodeoxyuridine (BrdU) to evaluate whether sex hormones affect stem cell cycling. By employing RT-PCR, we also evaluated the expression of cell-surface and intracellular receptors for hormones in purified populations of murine BM stem cells. In parallel, we studied whether stimulation by sex hormones activates major signaling pathways (MAPKp42/44 and AKT) in HSPCs and evaluated the effect of sex hormones on the clonogenic potential of murine CFU-Mix, BFU-E, CFU-GM, and CFU-Meg in vitro. We also sublethally irradiated mice and studied whether administration of sex hormones accelerates recovery of peripheral blood parameters. Finally, we determined the influence of sex hormones on the motility of stem cells in direct chemotaxis assays as well as in direct in vivo stem cell mobilization studies. Results We found that 10-day administration of each of the sex hormones evaluated in this study directly stimulated expansion of HSPCs in BM, as measured by an increase in the number of these cells in BM (∼2–3x), and enhanced BrdU incorporation (the percentage of quiescent BrdU+Sca-1+Lin–CD45– cells increased from ∼2% to ∼15–35% and the percentage of BrdU+Sca-1+Lin–CD45+ cells increased from 24% to 43–58%, Figure 1). These increases paralleled an increase in the number of clonogenic progenitors in BM (∼2–3x). We also observed that murine Sca-1+Lin–CD45– and Sca-1+Lin–CD45+ cells express sex hormone receptors and respond by phosphorylation of MAPKp42/44 and AKT in response to exposure to PSMG, LH, FSH, danazol and PRL. We also observed that administration of sex hormones accelerated the recovery of PB cell counts in sublethally irradiated mice and slightly mobilized HSPCs into PB. Finally, in direct in vitro clonogenic experiments on purified murine SKL cells, we observed a stimulatory effect of sex hormones on clonogenic potential in the order: CFU-Mix > BFU-E > CFU-Meg > CFU-GM. Conclusions Our data indicate for the first time that not only danazol but also several pituitary-secreted sex hormones directly stimulate the expansion of stem cells in BM. This effect seems to be direct, as precursors of LT-HSCs and HSPCs express all the receptors for these hormones and respond to stimulation by phosphorylation of intracellular pathways involved in cell proliferation. These hormones also directly stimulated in vitro proliferation of purified HSPCs. In conclusion, our studies support the possibility that not only danazol but also several other upstream pituitary sex hormones could be employed to treat aplastic disorders and irradiation syndromes. Further dose- and time-optimizing mouse studies and studies with human cells are in progress in our laboratories. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document