scholarly journals Expression of XBP1s in bone marrow stromal cells is critical for myeloma cell growth and osteoclast formation

Blood ◽  
2012 ◽  
Vol 119 (18) ◽  
pp. 4205-4214 ◽  
Author(s):  
Guoshuang Xu ◽  
Kai Liu ◽  
Judy Anderson ◽  
Kenneth Patrene ◽  
Suzanne Lentzsch ◽  
...  

Abstract BM stromal cells (BMSCs) are key players in the microenvironmental support of multiple myeloma (MM) cell growth and bone destruction. A spliced form of the X-box–binding protein-1 (XBP1s), a major proximal effector of unfolded protein response signaling, is highly expressed in MM cells and plays an indispensable role in MM pathogenesis. In the present study, we found that XBP1s is induced in the BMSCs of the MM microenvironment. XBP1s overexpression in healthy human BMSCs enhanced gene and/or protein expression of VCAM-1, IL-6, and receptor activator of NF-κB ligand (RANKL), enhancing BMSC support of MM cell growth and osteoclast formation in vitro and in vivo. Conversely, deficiency of XBP1 in healthy donor BMSCs displayed a range of effects on BMSCs that were opposite to those cells with overexpression of XBP1s. Knock-down of XBP1 in MM patient BMSCs greatly compromised their increased VCAM-1 protein expression and IL-6 and RANKL secretion in response to TNFα and reversed their enhanced support of MM-cell growth and osteoclast formation. Our results demonstrate that XBP1s is a pathogenic factor underlying BMSC support of MM cell growth and osteoclast formation and therefore represents a therapeutic target for MM bone disease.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hideki Kitaura ◽  
Keisuke Kimura ◽  
Masahiko Ishida ◽  
Haruka Kohara ◽  
Masako Yoshimatsu ◽  
...  

Tumor necrosis factor-α(TNF-α) is a cytokine produced by monocytes, macrophages, and T cells and is induced by pathogens, endotoxins, or related substances. TNF-αmay play a key role in bone metabolism and is important in inflammatory bone diseases such as rheumatoid arthritis. Cells directly involved in osteoclastogenesis include macrophages, which are osteoclast precursor cells, osteoblasts, or stromal cells. These cells express receptor activator of NF-κB ligand (RANKL) to induce osteoclastogenesis, and T cells, which secrete RANKL, promote osteoclastogenesis during inflammation. Elucidating the detailed effects of TNF-αon bone metabolism may enable the identification of therapeutic targets that can efficiently suppress bone destruction in inflammatory bone diseases. TNF-αis considered to act by directly increasing RANK expression in macrophages and by increasing RANKL in stromal cells. Inflammatory cytokines such as interleukin- (IL-) 12, IL-18, and interferon-γ(IFN-γ) strongly inhibit osteoclast formation. IL-12, IL-18, and IFN-γinduce apoptosis in bone marrow cells treated with TNF-α  in vitro, and osteoclastogenesis is inhibited by the interactions of TNF-α-induced Fas and Fas ligand induced by IL-12, IL-18, and IFN-γ. This review describes and discusses the role of cells concerned with osteoclast formation and immunological reactions in TNF-α-mediated osteoclastogenesisin vitroandin vivo.


Stem Cells ◽  
2012 ◽  
Vol 30 (2) ◽  
pp. 266-279 ◽  
Author(s):  
Song Xu ◽  
Eline Menu ◽  
Ann De Becker ◽  
Ben Van Camp ◽  
Karin Vanderkerken ◽  
...  

Author(s):  
Zhichen Pu ◽  
Weiwei Zhang ◽  
Minhui Wang ◽  
Maodi Xu ◽  
Haitang Xie ◽  
...  

Colon cancer, a common type of malignant tumor, seriously endangers human health. However, due to the relatively slow progress in diagnosis and treatment, the clinical therapeutic technology of colon cancer has not been substantially improved in the past three decades. The present study was designed to investigate the effects and involved mechanisms of schisandrin B in cell growth and metastasis of colon cancer. C57BL/6 mice received AOM and dextran sulfate sodium. Mice in treatment groups were gavaged with 3.75–30 mg/kg/day of schisandrin B. Transwell chamber migration, enzyme-linked immunosorbent assay (ELISA), Western blot analysis, immunoprecipitation (IP) and immunofluorescence were conducted, and HCT116 cell line was employed in this study. Data showed that schisandrin B inhibited tumor number and tumor size in the AOD+DSS-induced colon cancer mouse model. Schisandrin B also inhibited cell proliferation and metastasis of colon cancer cells. We observed that schisandrin B induced SMURF2 protein expression and affected SIRT1 in vitro and in vivo. SMURF2 interacted with SIRT1 protein, and there was a negative correlation between SIRT1 and SMURF2 expressions in human colorectal cancer. The regulation of SMURF2 was involved in the anticancer effects of schisandrin B in both in vitro and in vivo models. In conclusion, the present study revealed that schisandrin B suppressed SIRT1 protein expression, and SIRT1 is negatively correlated with the induction of SMURF2, which inhibited cell growth and metastasis of colon cancer. Schisandrin B could be a leading compound, which will contribute to finding novel potential agents and therapeutic targets for colon cancer.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 11-13 ◽  
Author(s):  
XG Zhang ◽  
B Klein ◽  
R Bataille

Abstract It has recently been demonstrated that interleukin-6 (IL-6) is a potent myeloma-cell growth factor in the majority of patients with multiple myeloma (MM). Using an anti-bromodeoxyuridine monoclonal antibody (MoAb) to specifically count myeloma cells in the S-phase (ie, labeling index, LI), we demonstrate that the IL-6 responsiveness of myeloma cells in vitro is directly correlated with their LI in vivo. Myeloma cells from all 13 patients with high LIs in vivo (greater than or equal to 1%) responded in vitro to IL-6, the strongest response occurring in cells from five patients with plasma-cell leukemia. In contrast, the cells of only two of eight patients with low myeloma-cell LIs in vivo (less than 1%) responded to IL-6 in vitro. After seven days of culturing with 1,000 U/mL recombinant IL-6 (rIL-6), the median LI value in the first group of patients (in vivo LI greater than or equal to 1%) was 11%, ie 11 times higher (P less than .01) than the median LI value (1%) in the second group of patients (in vivo LI less than 1%). Thus, the in vitro IL-6 responsiveness of myeloma cells is directly related to their in vivo proliferative status, and hence to the severity of the disease.


2014 ◽  
Vol 33 (1) ◽  
pp. 448-456 ◽  
Author(s):  
QI ZHANG ◽  
WEIQUN YAN ◽  
YANG BAI ◽  
HAO XU ◽  
CHANGHAO FU ◽  
...  

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 8582-8582
Author(s):  
Dharminder Chauhan ◽  
Arghya Ray ◽  
Christopher Brooks ◽  
Eric K. Rowinsky ◽  
Kenneth Carl Anderson

8582 Background: Multiple myeloma (MM) remains incurable despite novel therapies, highlighting the need for further identification of factors mediating disease progression and drug resistance. The bone marrow (BM) microenvironment confers growth, survival, and drug resistance in MM cells. Our recent study utilized in vitro and in vivo MM xenograft models to show that plasmacytoid dendritic cells (pDCs) were significantly increased in MM BM and promote MM growth (Chauhan et al., Cancer Cell 2009, 16:309). Importantly, we found increased IL-3 levels upon pDC-MM interaction, which in turn, trigger MM cell growth and pDCs survival. IL-3R is highly expressed on pDCs. We utilized SL-401, a novel biologic conjugate that targets IL-3R, to examine whether abrogation of IL-3–IL-3R signaling axis affects pDC-MM interaction and its tumor promoting sequelae. Methods: MM cell lines, patient MM cells, and pDCs from healthy donors or MM patients were utilized to study the anti-MM activity of SL-401. MM cells and pDCs were cultured alone or together in the presence or absence of SL-401, followed by analysis of cell growth or viability. Results: SL-401 significantly decreased the viability of pDCs at low concentrations (IC50: 0.83 ng/ml; P < 0.005, n = 3). SL-401 also decreased the viability of MM cells at clinically achievable doses. Co-culture of pDCs with MM cells induced growth of MM cell lines; and importantly, low doses (0.8 ng/ml) of SL-401 blocked MM cell growth-promoting activity of pDCs. MM patient-derived pDCs induced growth of MM cell lines and primary MM cells as well; conversely, SL-401 inhibited pDC-triggered MM cell growth (P < 0.005, n= 5). Tumor cells from 3 of the 5 patients were from patients whose disease was progressing while on bortezomib, dexamethasone, and lenalidomide therapies. In agreement with these results, SL-401 blocked pDC-induced growth of dexamethasone-resistant MM cell lines. Conclusions: Our study therefore provides the basis for directly targeting pDCs or blocking the pDC-MM interaction, as well as targeting MM, in novel therapeutic strategies with SL-401 to enhance MM cytotoxicity, overcome drug-resistance, and improve patient outcome.


2006 ◽  
Vol 12 (19) ◽  
pp. 5887-5894 ◽  
Author(s):  
Teru Hideshima ◽  
Paola Neri ◽  
Pierfranchesco Tassone ◽  
Hiroshi Yasui ◽  
Kenji Ishitsuka ◽  
...  

2021 ◽  
Vol 46 (2) ◽  
Author(s):  
Qi Zhang ◽  
Weiqun Yan ◽  
Yang Bai ◽  
Hao Xu ◽  
Changhao Fu ◽  
...  

2020 ◽  
Vol 98 (5) ◽  
pp. 556-564
Author(s):  
Jubo Wang ◽  
Yu Quan ◽  
Jian Lv ◽  
Quan Dong ◽  
Shouping Gong

Glioma is a type of brain tumor that is common globally, and is associated with a variety of genetic changes. It has been reported that isocitrate dehydrogenase 1 (IDH1) is overexpressed in glioma and in HeLa cells. The lncRNA IDH1-AS1 is believed to interact with IDH1, and when IDH1-AS1 is overexpressed, HeLa cell proliferation is inhibited. However, the effects of IDH1-AS1 on glioma were relatively unknown. The results from this work show that IDH1-AS1 is downregulated in the glioma tissues. We used primary glioblastoma cell lines U251 and U87-MG to study the effects of IDH1-AS1 on glioma cell growth, in vitro and in vivo. We found that when IDH1-AS1 is overexpressed cell proliferation is inhibited, cell cycle is arrested at the G1 phase, and the protein expression levels of cyclinD1, cyclinA, cyclinE, CDK2, and CDK4 are decreased. We found that cell apoptosis was increased when IDH1-AS1 was overexpressed, as evidenced by increases in the levels of cleaved caspase-9 and -3. Conversely, knockdown of IDH1-AS1 promoted cell proliferation. Moreover, we proved that overexpression of IDH1-AS1 inhibits the tumorigenesis of U251 cells, in vivo. Furthermore, IDH1-AS1 did not affect IDH1 protein expression, but altered its enzymatic activities in glioma cells. Silencing of IDH1 reversed the effects of IDH1-AS1 upregulation on cell viability. Hence, our study provides first-hand evidence for the effects of lncRNA IDH1-AS1 on gliomas. Because overexpressing IDH1-AS1 inhibited cell growth, IDH1-AS1 could also be considered as a potential target for glioma treatment.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2490-2490
Author(s):  
Paola Neri ◽  
Pierfrancesco Tassone ◽  
Masood A. Shammas ◽  
Daniel R. Carrasco ◽  
Renate Burger ◽  
...  

Abstract Multiple Myeloma (MM) cells interact with bone marrow (BM) microenvironment leading to induction of adhesion-mediated and cytokine mediated cell signalling which plays a critical role in promoting MM cell growth, survival, migration and development of drug resistance. We have previously evaluated gene expression changes following interaction between MM cells and BM stromal cells in vitro. However, the interaction between MM cells and microenvironment cells within the bone marrow is unique and its understanding is critical in evaluating effects of novel agents. We here describe a unique model that allows us to analyse in vivo expression changes in MM cells within the human BM milieu; and present preliminary results of expression changes following these in vivo interactions. In this model, BM stromal and IL-6-dependent human MM cell line INA-6 tranduced with GFP (green fluorescent protein) was injected in human fetal bone chip transplanted into SCID mice (SCID-hu mice). The MM cells were allowed to interact with the bone marrow for variable length of time, the bone chip was then retrieved, cells flashed out and GFP+ MM cells were separated by flow cytometry. The GFP negative fraction, containing stromal elements was also separated. Similar flow isolation process was used on INA-6GFP+ cells cultured in vitro and used as control. Total RNA was isolated from these cells and gene expression profile analyzed using the HG-U133 array chip (Affimetrix). We report that interaction between INA-6 cells and the BM microenvironment in vivo induced significant changes in expression profile. In particular, we observed up-regulation of genes implicated in regulation of cell proliferation (RGS 1 and 2, FOS, FOSB, S100A4); DNA transcription (AP1, SWI/SNF related member 1); chromosome organization (Histone1, 2 and 3); cellular trafficking and transport (ARFGEF2, Aquarin 3 and ATPase 4B); and signal transduction (Chemokine ligand 2, 3 and 15, Chemokine receptor 1, 2 and 4, Dual specificity phosphatase 1 and 4, Protein tyrosine phosphatase 1, PIP5-kinase 1A and ZAP70). We also observed down-regulation of genes involved in apoptosis (BCL2-interacting killer, APC, E1A binding protein p300, Fas-associated via death domain, Caspase-activated Dnase, Raf1); and cell-cell adhesion molecules (Cadherin 15, Leupakin, Neurekin, CD44, ICAM2 and PECAM-1a). Although some similarities were observed in gene profile changes following in vitro and in vivo interaction with microenvironment cells, differences were also found. We are now evaluating the effects of interaction on expression profile of stromal cells as well as duration of interaction. Taken together these data confirm the ability of BM microenvironment to modulate gene expression profile of the MM cells in vivo to mediate the MM cell growth, survival and migration. This model now provides us with an opportunity to study effects of novel agents on MM cells expression profile in vivo to pre-clinically characterize their activity.


Sign in / Sign up

Export Citation Format

Share Document