scholarly journals Novel protein ADTRP regulates TFPI expression and function in human endothelial cells in normal conditions and in response to androgen

Blood ◽  
2011 ◽  
Vol 118 (16) ◽  
pp. 4463-4471 ◽  
Author(s):  
Cristina Lupu ◽  
Hua Zhu ◽  
Narcis I. Popescu ◽  
Jonathan D. Wren ◽  
Florea Lupu

Abstract Thrombosis and cardiovascular disease (CVD) represent major causes of morbidity and mortality. Low androgen correlates with higher incidence of CVD/thrombosis. Tissue Factor Pathway Inhibitor (TFPI) is the major inhibitor of tissue factor-factor VIIa (TF-FVIIa)–dependent FXa generation. Because endothelial cell (EC) dysfunction leading to vascular disease correlates with low EC-associated TFPI, we sought to identify mechanisms that regulate the natural expression of TFPI. Data mining of NCBI's GEO microarrays revealed strong coexpression between TFPI and the uncharacterized protein encoded by C6ORF105, which is predicted to be multispan, palmitoylated and androgen-responsive. We demonstrate that this protein regulates both the native and androgen-enhanced TFPI expression and activity in cultured ECs, and we named it androgen-dependent TFPI-regulating protein (ADTRP). We confirm ADTRP expression and colocalization with TFPI and caveolin-1 in ECs. ADTRP-shRNA reduces, while over-expression of ADTRP enhances, TFPI mRNA and activity and the colocalization of TF-FVIIa–FXa-TFPI with caveolin-1. Imaging and Triton X-114–extraction confirm TFPI and ADTRP association with lipid rafts/caveolae. Dihydrotestosterone up-regulates TFPI and ADTRP expression, and increases FXa inhibition by TFPI in an ADTRP- and caveolin-1-dependent manner. We conclude that the ADTRP-dependent up-regulation of TFPI expression and activity by androgen represents a novel mechanism of increasing the anticoagulant protection of the endothelium.

2005 ◽  
Vol 280 (23) ◽  
pp. 22308-22317 ◽  
Author(s):  
Cristina Lupu ◽  
Xiaohong Hu ◽  
Florea Lupu

Tissue factor pathway inhibitor (TFPI) blocks tissue factor-factor VIIa (TF-FVIIa) activation of factors X and IX through the formation of the TF-FVIIa-FXa-TFPI complex. Most TFPI in vivo associates with caveolae in endothelial cells (EC). The mechanism of this association and the anticoagulant role of caveolar TFPI are not yet known. Here we show that expression of caveolin-1 (Cav-1) in 293 cells keeps TFPI exposed on the plasmalemma surface, decreases the membrane lateral mobility of TFPI, and increases the TFPI-dependent inhibition of TF-FVIIa. Caveolae-associated TFPI supports the co-localization of the quaternary complex with caveolae. To investigate the significance of these observations for EC we used RNA interference to deplete the cells of Cav-1. Functional assays and fluorescence microscopy revealed that the inhibitory properties of TFPI were diminished in EC lacking Cav-1, apparently through deficient assembly of the quaternary complex. These findings demonstrate that caveolae regulate the inhibition by cell-bound TFPI of the active protease production by the extrinsic pathway of coagulation.


1997 ◽  
Vol 78 (03) ◽  
pp. 1138-1141 ◽  
Author(s):  
Yuichiro Sato ◽  
Yujiro Asada ◽  
Kousuke Marutsuka ◽  
Kinta Hatakeyama ◽  
Yuichi Kamikubo ◽  
...  

SummaryTissue factor (TF), a transmembrane glycoprotein, forms a high affinity complex with factor Vll/VIIa (FVIIa) and thereby initiates blood coagulation. Tissue factor pathway inhibitor (TFPI) is an endogenous protease inhibitor of TF/FVIIa-initiated coagulation. We previously reported that TF was a strong chemotactic factor for cultured vascular smooth muscle cells (SMCs). In this study, we examined the contribution of FVIIa and the effect of TFPI to TF-induced cultured SMC migration. TF/FVIIa complex showed a strong migration ability, however, neither TF alone nor FVIIa induced SMC migration. TF/FVIIa treated by a serine protease inhibitor and the complex of TF and inactivated FVIIa (DEGR-FVIIa) did not stimulate SMC migration. Pretreatment with hirudin and the antibodies to a-thrombin and factor X had no effect on TF/FVIIa-induced SMC migration, although a-thrombin and factor Xa also induced SMC migration respectively. TFPI markedly inhibited TF/FVIIa-induced SMC migration in a concentration-dependent manner, but did not affect the SMC migration induced by platelet-derived growth factor (PDGF)-BB, basic fibro blast-growth factor (bFGF), or a-thrombin. These results indicate that the catalytic activity of TF/FVIIa complex is important on SMC migration, and TFPI can reduce SMC migration as well as thrombosis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 348-348
Author(s):  
Cristina Lupu ◽  
Hua Zhu ◽  
Jonathan Wren ◽  
Florea Lupu

Abstract Abstract 348 Cardiovascular disease (CVD) and thrombotic complications (deep vein thrombosis/venous thromboembolism, DVT/VTE) represent major health problems, with men having higher rates of clinical events than women. Tissue Factor Pathway Inhibitor (TFPI) is the key natural inhibitor of coagulation: it neutralizes factor Xa (FXa) and inhibits tissue factor-factor VIIa (TF-FVIIa) in the presence of FXa. In vivo most of TFPI is in endothelial cells (EC), reversibly bound to yet unidentified receptors, and glycosyl phosphatidylinositol-floated in caveolae and/or lipid raft microdomains. Intravascular thrombosis occurs frequently in older people, especially associated with cancer, diabetes, or CVD. TF is directly involved in tumor hypercoagulability, angiogenesis and metastasis. Cell-associated TFPI is the most physiologically significant inhibitor of the TF-FVIIa- triggered coagulation pathway; nevertheless, very few mechanisms/factors that could regulate the natural expression of TFPI have been identified so far. Here we describe androgen treatment of EC as a novel way to preserve and/or enhance a healthy vascular function, particularly related to the regulation of TFPI-dependent anticoagulant function of the endothelium. Our hypothesis is that a yet uncharacterized protein encoded by C6orf105 is a novel regulator of TFPI expression and function in EC, both in native conditions and during androgen stimulation. “In silico” data mining using global meta-analysis of publicly available NCBI's Gene Expression Omnibus 2-channel human microarray datasets identified C6orf105 as highly co-expressed with TFPI and following a parallel co-regulation. The uncharacterized protein has 230-aa, Mr ∼27 kDa, 5–6 predicted transmembrane domains and has sequence similarities with members of the androgen-inducible genes family. We tentatively named it TFPI-Regulating Factor (TFPI-RF). Real-time qPCR and western blot confirmed robust expression of TFPI-RF in EC in culture (HUVEC and EA.hy926 hybrid cell line). By immunofluorescence (IMF) TFPI-RF appears both on the cell surface and intracellularly co-localizing with TFPI and caveolin-1 (cav-1). Post-transcriptional (siRNA) down-regulation of TFPI-RF decreased TFPI, both as protein (∼2-times) and as anticoagulant activity (∼3-fold), apparently by reducing the co-localization of the TF-FVIIa-FXa-TFPI complex with cav-1. Over-expression of TFPI-RF in HUVEC and EA.hy926 led to enhanced co-localization of TFPI-RF with TFPI, and increased TFPI mRNA and anticoagulant activity (∼2-times). Western blot of cellular fractions after extraction with Triton X-114 and temperature-induced phase separation revealed the presence of TFPI and TFPI-RF in detergent-insoluble fractions, which suggests predominant lipid raft association. IMF illustrates TFPI-RF co-clustering with TFPI and cav-1 or GM1 (raft marker) in live EC incubated with anti-TFPI antibody or Cholera Toxin-B, respectively. The effect of androgens was studied by incubating EC with 30 nM dehydrotestosterone (DHT) or equivalent testosterone-BSA (cell-impermeable). 1-h incubation led to 2-times enhanced TFPI activity, increased co-localization of the quaternary complex with cav-1 and TFPI-RF, and enhanced exposure of TFPI and TFPI-RF on the cell surface. 24-h treatment with DHT up-regulates the expression of both TFPI (2-fold) and TFPI-RF (3-fold), as well as the TFPI inhibitory activity against FXa. DHT failed to enhance TFPI activity in TFPI-RF siRNA EC. Our results reveal a novel mechanism of up-regulation of the anticoagulant activity of endogenous TFPI in response to physiological levels of androgen. While the precise role of androgens in the ageing process is unclear, it is believed that androgen replacement could have beneficial influence on the declining functions in the elderly. Our data could expand on the effects of androgens on the haemostatic function of the endothelium and discover new roles for novel proteins like C6orf105/TFPI-RF in enhancing the endothelial anticoagulant function. These may open possibilities to manipulate the cellular endogenous TFPI and/or other intrinsic factors to counteract pro-thrombotic states associated with CVD, DVT/VTE, sepsis and cancer. Disclosures: No relevant conflicts of interest to declare.


1997 ◽  
Vol 77 (03) ◽  
pp. 492-497 ◽  
Author(s):  
Yoshiaki Kazama

SummaryTo investigate the inhibitory mechanism of tissue factor pathway inhibitor (TFPI), an attempt was made to examine the inhibitory activity of TFPI toward the factor Vila-truncated tissue factor (TF1-219) complex, which lacks its transmembrane and cytoplasmic domains. Factor VIIa-TF1-219 activity was significantly inhibited by TFPI-factor Xa complex in the presence of phospholipids, but was not in the absence of phospholipids. In addition, TFPI did not inhibit factor VIIa-TF1-219activity in the presence of γ-carboxyglutamic acid-domainless factor Xa. The ability of TFPI-factor Xa complex to inhibit factor VIIa-TF1-219 activity was totally dependent on the presence of phospholipids and was neutralized by prothrombin fragment 1 in a dose-dependent manner. These results indicate that the transmembrane and cytoplasmic domains of tissue factor are not essential for the inhibitory mechanism of TFPI and confirm that the binding of factor Xa to phospholipids through its γ-carboxyglutamic acid domain is essential for this reaction.


2008 ◽  
Vol 100 (08) ◽  
pp. 291-300 ◽  
Author(s):  
Yi-Jian Chen ◽  
Li-Qun Zhang ◽  
Guang-Ping Wang ◽  
Hui Zeng ◽  
Ben Lü ◽  
...  

SummaryTissue factor (TF) plays a pivotal role in thrombus formation and atherogenesis in acute coronary syndrome. Tissue factor pathway inhibitor (TFPI) is a specific physiological inhibitor of TF/ FVIIa complex that regulates TF-induced coagulation. Adiponectin (Adp) is an adipocyte-specific adipocytokine with anti-atherogenic and anti-diabetic properties. Adp inhibits inflammatory cytokine and adhesion molecules expression, and it can prevent endothelial dysfunction. In this study, we investigated the effects of Adp on tumor necrosis factor-α (TNF-α)-induced expression of TF and TFPI in human umbilical vein endothelial cells (HU-VECs), and the signaling transduction pathways involved. It was found that Adp significantly inhibited both TF protein expression and activity in TNF-α-stimulated HUVECs. In the meanwhile, it increased TFPI protein expression and activity for about two folds. Adp also inhibited TF mRNA expression induced by TNF-α, but had no effect on TFPI mRNA expression. The inhibitory effect of Adp onTNF-α-inducedTF expression was prevented by pretreatment with Rp-cAMPs, a PKA inhibitor. Adp increased intracellular cAMP content and PKA activity levels in a dose-dependent manner. Phosphorylation of IκB-α was decreased by Adp, but phosphorylation of p44/42MAPK, SAPK/ JNK, and p38MAPK were not affected. These results suggested that Adp inhibits TF expression through inhibition of a PKA dependent nuclear factor- κB (NF-κB) signaling pathway. It was also found that adiponectin promoted Akt and AMP-activated protein kinase phosphorylation. The inhibitory effect of Adp on TNF-α-induced TF synthesis was abrogated in part by pretreatment with the PI3kinase inhibitor LY 294002, suggesting that Akt activation might inhibit TF expression induced by TNF-α. The inhibitory effect of Adp is almost completely abrogated by inhibition of both the cAMP/PKA pathway and PI3K/Akt pathway. In conclusion, our data indicated that inhibition of NF-κB through stabilization of IκB-α and activation of Akt phosphorylation may mediate the inhibitory effect of Adp on TF expression; but the enhancement effect of Adp on the TFPI production might occur via translational rather than transcriptional regulation.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1845-1850 ◽  
Author(s):  
AE Mast ◽  
GJ Jr Broze

Tissue factor pathway inhibitor (TFPI) is a Kunitz-type serine proteinase inhibitor that directly inhibits factor Xa and, in a factor Xa dependent manner, inhibits the factor VIIa/tissue factor catalytic complex. The inhibitory effect of TFPI in prothrombin activation assays using purified components of the prothrombinase complex was examined. When factor Xa is added to mixtures containing TFPI, prothrombin, calcium ions, and nonactivated platelets or factor V and phospholipids, TFPI significantly reduces subsequent thrombin generation, and the inhibitory effect is enhanced by heparin. If factor Xa is preincubated with calcium ions and thrombin-activated platelets or factor Va and phospholipids to permit formation of prothrombinase before the addition of prothrombin and physiologic concentrations of TFPI (< 8 nmol/L), minimal inhibition of thrombin generation occurs, even in the presence of heparin. Thus, contrary to results in amidolytic assays with chromogenic substrates, prothrombinase is resistant to inhibition by TFPI in the presence of its physiological substrate, prothrombin. Higher concentrations of TFPI (approximately 100 nmol/L), similar to those used in animal studies testing for therapeutic actions of TFPI, do effectively block prothrombinase activity.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1845-1850 ◽  
Author(s):  
AE Mast ◽  
GJ Jr Broze

Abstract Tissue factor pathway inhibitor (TFPI) is a Kunitz-type serine proteinase inhibitor that directly inhibits factor Xa and, in a factor Xa dependent manner, inhibits the factor VIIa/tissue factor catalytic complex. The inhibitory effect of TFPI in prothrombin activation assays using purified components of the prothrombinase complex was examined. When factor Xa is added to mixtures containing TFPI, prothrombin, calcium ions, and nonactivated platelets or factor V and phospholipids, TFPI significantly reduces subsequent thrombin generation, and the inhibitory effect is enhanced by heparin. If factor Xa is preincubated with calcium ions and thrombin-activated platelets or factor Va and phospholipids to permit formation of prothrombinase before the addition of prothrombin and physiologic concentrations of TFPI (< 8 nmol/L), minimal inhibition of thrombin generation occurs, even in the presence of heparin. Thus, contrary to results in amidolytic assays with chromogenic substrates, prothrombinase is resistant to inhibition by TFPI in the presence of its physiological substrate, prothrombin. Higher concentrations of TFPI (approximately 100 nmol/L), similar to those used in animal studies testing for therapeutic actions of TFPI, do effectively block prothrombinase activity.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1753-1753
Author(s):  
Cristina Lupu ◽  
Florea Lupu

Abstract The assembly of tissue factor-factor VIIa (TF-FVIIa) complex results in the proteolytic activation of factors X (FX) and IX and ultimate thrombin generation. The inhibition of this pathway by the Kunitz-type inhibitor, tissue factor pathway inhibitor (TFPI), involves the formation of a stable TF-FVIIa-FXa-TFPI complex. TFPI in endothelial cells (EC) locates primarily in rafts and caveolae, which are membrane microdomains enriched in cholesterol, glycosphingolipids (GSL) and caveolins, and which regulate the function of TFPI. Since caveolin-1 supports the TFPI-dependent inhibition of TF-FVIIa, we aimed to decipher the role played by the individual components of rafts in the anticoagulant function of cell surface TFPI. To this end, we studied the distribution of TFPI, TF and caveolin-1 by immunofluorescence microscopy, and we assayed the functional activity of TFPI after cholesterol-complexation on EC (EA. hy926 and HUVEC) and HEK293 expressing TFPI or TFPI+caveolin-1, or we used GSL-deficient CHO mutant cell lines. In EC, cholesterol complexation with filipin led to patching of TFPI over the cell surface and reduced inhibition of TF-FVIIa. Extraction of cholesterol from the external leaflet of the membrane with methyl-β-cyclodextrin (M-β-CD) shifted the partition of TFPI from predominantly raft-associated to the non-raft cellular fractions isolated through temperature-induced phase separation of Triton X-114 lysates. Although activation of FX by TF-FVIIa was significantly enhanced by M-β-CD and reversed after cholesterol replenishment, the effect was only modestly affected by the TFPI activity reduction. By immunofluorescence we observed that M-β-CD produced redistribution of both TFPI and TF over the EC and 293 cell surface with apparent segregation into separate domains and complete lack of co-localization. Such accumulations of TF will likely promote strong procoagulant activity when not inhibited by TFPI. Since M-β-CD selectively disrupts the glycerophospholipid-rich regions of the membrane while leaving the caveolar cholesterol virtually intact, we also tested progesterone, which extracts cholesterol specifically from caveolae. Treatment of HEK293 cells with progesterone for 2 hrs reduced significantly the inhibition of TF-FVIIa-dependent activation of FX by TFPI for TFPI+Cav+ cells but not for TFPI+ cells, suggesting that the process was specific for cells that have caveolae. To study the role of GSL for the activity of TFPI, we used Ly-B cells, a GSL-deficient mutant derived from CHO-K1, which have a defect in the LCB1 subunit of serine palmitoyltransferase. Characterization of endogenous TFPI in CHO-K1, Ly-B and its genetically corrected revertant Ly-B/cLCB1 (cLCB) revealed strong similarities between CHOs and EC with regard to the expression and function of TFPI. Whereas not affecting cLCB cells, incubation of Ly-B for 2 days in sphingolipid-deficient medium shifted the partition of cellular TFPI from the detergent-soluble (rafts) to the water-soluble (non-raft) fraction, which suggests that GSL play a major role in the distribution and function of the membrane TFPI. The fundamental knowledge developed by these studies will improve our understanding of the mechanisms by which TFPI functions against TF-FVIIa procoagulant activity on cell surfaces. In the long term, they may guide novel therapeutic approaches to prevent inflammation and thrombosis.


1997 ◽  
Vol 78 (04) ◽  
pp. 1202-1208 ◽  
Author(s):  
Marianne Kjalke ◽  
Julie A Oliver ◽  
Dougald M Monroe ◽  
Maureane Hoffman ◽  
Mirella Ezban ◽  
...  

SummaryActive site-inactivated factor VIIa has potential as an antithrombotic agent. The effects of D-Phe-L-Phe-L-Arg-chloromethyl ketone-treated factor VIla (FFR-FVIIa) were evaluated in a cell-based system mimicking in vivo initiation of coagulation. FFR-FVIIa inhibited platelet activation (as measured by expression of P-selectin) and subsequent large-scale thrombin generation in a dose-dependent manner with IC50 values of 1.4 ± 0.8 nM (n = 8) and 0.9 ± 0.7 nM (n = 7), respectively. Kd for factor VIIa binding to monocytes ki for FFR-FVIIa competing with factor VIIa were similar (11.4 ± 0.8 pM and 10.6 ± 1.1 pM, respectively), showing that FFR-FVIIa binds to tissue factor in the tenase complex with the same affinity as factor VIIa. Using platelets from volunteers before and after ingestion of aspirin (1.3 g), there were no significant differences in the IC50 values of FFR-FVIIa [after aspirin ingestion, the IC50 values were 1.7 ± 0.9 nM (n = 8) for P-selectin expression, p = 0.37, and 1.4 ± 1.3 nM (n = 7) for thrombin generation, p = 0.38]. This shows that aspirin treatment of platelets does not influence the inhibition of tissue factor-initiated coagulation by FFR-FVIIa, probably because thrombin activation of platelets is not entirely dependent upon expression of thromboxane A2.


Blood ◽  
2006 ◽  
Vol 107 (12) ◽  
pp. 4746-4753 ◽  
Author(s):  
Samir K. Mandal ◽  
Usha R. Pendurthi ◽  
L. Vijaya Mohan Rao

AbstractTissue factor (TF) is the cellular receptor for clotting factor VIIa (FVIIa). The formation of TF-FVIIa complexes on cell surfaces triggers the activation of coagulation cascade and cell signaling. In the present study, we characterized the subcellular distribution of TF and its transport in fibroblasts by dual immunofluorescence confocal microscopy and biochemical methods. Our data show that a majority of TF resides in various intracellular compartments, predominantly in the Golgi. Tissue factor at the cell surface is localized in cholesterol-rich lipid rafts and extensively colocalized with caveolin-1. FVIIa binding to TF induces the internalization of TF. Of interest, we found that TF-FVIIa complex formation at the cell surface leads to TF mobilization from the Golgi with a resultant increase in TF expression at the cell surface. This process is dependent on FVIIa protease activity. Overall, the present data suggest a novel mechanism for TF expression at the cell surface by FVIIa. This mechanism could play an important role in hemostasis in response to vascular injury by increasing TF activity where and when it is needed.


Sign in / Sign up

Export Citation Format

Share Document