scholarly journals Amelioration of the severity of heparin-binding antithrombin mutations by posttranslational mosaicism

Blood ◽  
2012 ◽  
Vol 120 (4) ◽  
pp. 900-904 ◽  
Author(s):  
Irene Martínez-Martínez ◽  
José Navarro-Fernández ◽  
Alice Østergaard ◽  
Ricardo Gutiérrez-Gallego ◽  
José Padilla ◽  
...  

The balance between actions of procoagulant and anticoagulant factors protects organisms from bleeding and thrombosis. Thus, antithrombin deficiency increases the risk of thrombosis, and complete quantitative deficiency results in intrauterine lethality. However, patients homozygous for L99F or R47C antithrombin mutations are viable. These mutations do not modify the folding or secretion of the protein, but abolish the glycosaminoglycan-induced activation of antithrombin by affecting the heparin-binding domain. We speculated that the natural β-glycoform of antithrombin might compensate for the effect of heparin-binding mutations. We purified α- and β-antithrombin glycoforms from plasma of 2 homozygous L99F patients. Heparin affinity chromatography and intrinsic fluorescence kinetic analyses demonstrated that the reduced heparin affinity of the α-L99F glycoform (KD, 107.9 ± 3nM) was restored in the β-L99F glycoform (KD, 53.9 ± 5nM) to values close to the activity of α-wild type (KD, 43.9 ± 0.4nM). Accordingly, the β-L99F glycoform was fully activated by heparin. Similar results were observed for recombinant R47C and P41L, other heparin-binding antithrombin mutants. In conclusion, we identified a new type of mosaicism associated with mutations causing heparin-binding defects in antithrombin. The presence of a fully functional β-glycoform together with the activity retained by these variants helps to explain the viability of homozygous and the milder thrombotic risk of heterozygous patients with these specific antithrombin mutations.

2003 ◽  
Vol 284 (6) ◽  
pp. C1604-C1613 ◽  
Author(s):  
Robert Q. Miao ◽  
Vincent Chen ◽  
Lee Chao ◽  
Julie Chao

Kallistatin is a serpin first identified as a specific inhibitor of tissue kallikrein. Our recent studies showed that kallikrein promoted angiogenesis, whereas kallistatin inhibited angiogenesis and tumor growth. This study is aimed to identify the structural elements of kallistatin essential for its antiangiogenic function. Kallistatin mutants at the hinge region (A377T) and a major heparin-binding domain (K312A/K313A) were created by site-directed mutagenesis. Recombinant kallistatin mutant A377T did not bind or inhibit tissue kallikrein activity. Wild-type kallistatin and kallistatin mutant A377T, but not kallistatin mutant K312A/K313A lacking heparin-binding activity, inhibited VEGF-induced proliferation, growth, and migration of human microvascular endothelial cells. Similarly, wild-type kallistatin and kallistatin mutant A337T, but not kallistatin mutant K312A/K313A, significantly inhibited VEGF-induced capillary tube formation of cultured endothelial cells in Matrigel and capillary formation in Matrigel implants in mice. To elucidate the role of the heparin-binding domain in modulating angiogenesis, we showed that wild-type kallistatin interrupted the binding of125I-labeled VEGF to endothelial cells, whereas kallistatin mutant K312A/K313A did not interfere with VEGF binding. Consequently, wild-type kallistatin, but not kallistatin mutant K312A/K313A, suppressed VEGF-induced phosphorylation of Akt. Taken together, these results indicate that the heparin-binding domain, but not the reactive site loop of kallistatin, is essential for inhibiting VEGF-induced angiogenesis.


2000 ◽  
Vol 24 (1) ◽  
pp. 43-51 ◽  
Author(s):  
H Song ◽  
J Beattie ◽  
IW Campbell ◽  
GJ Allan

Using site-directed mutagenesis, we have undertaken a study of a potential IGF-binding site in the C-terminal domain of rat IGFBP-5, lying close to or within a previously described heparin-binding domain (residues 201-218) in this protein. After analysis of binding activity using three different methods - ligand blotting, solution phase equilibrium binding and biosensor measurement of real-time on- and off-rates - we report that the mutation of two highly conserved residues within this region (glycine 203 and glutamine 209) reduces the affinity of the binding protein for both IGF-I and IGF-II, while having no effect on heparin binding. In addition, we confirm that mutation of basic residues within the heparin-binding domain (R201L, K202E, K206Q and R214A) results in a protein that has attenuated heparin binding but shows only a small reduction in affinity for IGF-I and -II. Previous findings have described the reduction in affinity of IGFBP-5 for IGFs that occurs after complexation of the binding protein with heparin or other components of the extracellular matrix (ECM) and have postulated that such an interaction may result in conformational changes in protein structure, affecting subsequent IGF interaction. Our data suggesting potential overlap of heparin- and IGF-binding domains argue for a more direct effect of ECM modulation of the affinity of IGFBP-5 for ligand by partial occlusion of the IGF-binding site after interaction with ECM.


2001 ◽  
Vol 360 (1) ◽  
pp. 239-245 ◽  
Author(s):  
Jungyean KIM ◽  
Innoc HAN ◽  
Yeonhee KIM ◽  
Seungin KIM ◽  
Eok-Soo OH

Fibronectin (FN) stimulates multiple signalling events including mitogen-activated protein kinase (MAPK) activation. During cell spreading, both the cell-binding domain and the C-terminal heparin-binding domain (HepII) of FN co-operatively regulate cytoskeleton organization. However, in comparison with the large number of studies on the functions of cell-binding domain, there is little information about the role of HepII. We therefore investigated the effect of HepII on integrin-mediated cell spreading and adhesion on FN and MAPK activation. In contrast with cells on FN substrates, rat embryo fibroblasts on FN120, which lacks HepII, were less spread, had weaker adhesion to FN and failed to form focal adhesions and actin stress fibres. Phosphotyrosine was present in the focal contacts of rat embryo fibroblasts on FN within 30min but was absent from cells on FN120. Overall, tyrosine phosphorylation was much less in cell lysates from cells on FN120, with decreased phosphorylation of focal adhesion kinase (‘pp125FAK’) on tyrosine-397, implying additional regulation of tyrosine phosphorylation by HepII. Nevertheless, adhesion-mediated MAPK activity was similar in cells on FN and on FN120. Furthermore, cells spread on FN and on FN120 substrates showed similar MAPK activation in response to treatment with epidermal growth factor and with platelet-derived growth factor. Consistently, overexpression of syndecan-4, which binds to HepII, enhanced cell spreading and adhesion on FN but did not affect integrin-mediated MAPK activation. We therefore conclude that both HepII and syndecan-4 regulate integrin-mediated cell spreading but not MAPK activation.


Sign in / Sign up

Export Citation Format

Share Document