scholarly journals Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells

Blood ◽  
2016 ◽  
Vol 127 (9) ◽  
pp. 1138-1150 ◽  
Author(s):  
Michele Cea ◽  
Antonia Cagnetta ◽  
Sophia Adamia ◽  
Chirag Acharya ◽  
Yu-Tzu Tai ◽  
...  

Key Points SIRT6 is highly expressed in multiple myeloma cells and blocks expression of ERK-regulated genes. Targeting SIRT6 enzymatic activity sensitizes multiple myeloma cells to DNA-damaging agents.

BMC Cancer ◽  
2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Cinzia Fionda ◽  
Maria Pia Abruzzese ◽  
Alessandra Zingoni ◽  
Alessandra Soriani ◽  
Biancamaria Ricci ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 504
Author(s):  
Takayuki Saitoh ◽  
Tsukasa Oda

Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by genomic instability. MM cells present various forms of genetic instability, including chromosomal instability, microsatellite instability, and base-pair alterations, as well as changes in chromosome number. The tumor microenvironment and an abnormal DNA repair function affect genetic instability in this disease. In addition, states of the tumor microenvironment itself, such as inflammation and hypoxia, influence the DNA damage response, which includes DNA repair mechanisms, cell cycle checkpoints, and apoptotic pathways. Unrepaired DNA damage in tumor cells has been shown to exacerbate genomic instability and aberrant features that enable MM progression and drug resistance. This review provides an overview of the DNA repair pathways, with a special focus on their function in MM, and discusses the role of the tumor microenvironment in governing DNA repair mechanisms.


2012 ◽  
Vol 303 (7) ◽  
pp. L557-L566 ◽  
Author(s):  
Hongwei Yao ◽  
Irfan Rahman

Histone deacetylase 2 (HDAC2) is a class I histone deacetylase that regulates various cellular processes, such as cell cycle, senescence, proliferation, differentiation, development, apoptosis, and glucocorticoid function in inhibiting inflammatory response. HDAC2 has been shown to protect against DNA damage response and cellular senescence/premature aging via an epigenetic mechanism in response to oxidative stress. These phenomena are observed in patients with chronic obstructive pulmonary disease (COPD). HDAC2 is posttranslationally modified by oxidative/carbonyl stress imposed by cigarette smoke and oxidants, leading to its reduction via an ubiquitination-proteasome dependent degradation in lungs of patients with COPD. In this perspective, we have discussed the role of HDAC2 posttranslational modifications and its role in regulation of inflammation, histone/DNA epigenetic modifications, DNA damage response, and cellular senescence, particularly in inflammaging, and during the development of COPD. We have also discussed the potential directions for future translational research avenues in modulating lung inflammaging and cellular senescence based on epigenetic chromatin modifications in diseases associated with increased oxidative stress.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4435-4435
Author(s):  
Herviou Laurie ◽  
Fanny Izard ◽  
Elke De Bruyne ◽  
Eva Desmedt ◽  
Anqi Ma ◽  
...  

Abstract Epigenetic regulation mechanisms - such as histone marks, DNA methylation and miRNA - are often misregulated in cancers and are associated with tumorigenesis and drug resistance. Multiple Myeloma (MM) is a malignant plasma cell disease that accumulates within the bone marrow. Epigenetic modifications in MM are associated not only with cancer development and progression, but also with resistance to chemotherapy. This epigenetic plasticity can be targeted with epidrugs, nowadays used in treatment of several cancers. We recently identified a significant overexpression of the lysine histone methyltransferase SETD8 in MM cells (HMCLs; N=40) compared with normal plasma cells (N=5) (P<0.001). SETD8 (also known as SET8, PR-Set7, KMT5A) is the sole enzyme responsible for the monomethylation of histone H4 at lysine 20 (H4K20me1) which has been linked to chromatin compaction and cell-cycle regulation. In addition, SETD8 induces the methylation of non-histone proteins, such as the replication factor PCNA, the tumor suppressor P53 and its stabilizing protein Numb. While SETD8-mediated methylation of P53 and Numb inhibits apoptosis, PCNA methylation upon SETD8 enhances the interaction with the Flap endonuclease FEN1 and promotes cancer cell proliferation. SETD8 is also implicated in DNA damage response, helping 53BP1 recruitment at DNA double-strand breaks. Consistent with this, overexpression of SETD8 is found in various types of cancer and has been directly implicated in breast cancer invasiveness and metastasis. A role of SETD8 in development of MM has however never been described. We found that high SETD8 expression is associated with a poor prognosis in 2 independent cohorts of newly diagnosed patients (UAMS-TT2 cohort - N=345 and UAMS-TT3 cohort - N=158). Specific SETD8 inhibition with UNC-0379 inhibitor, causing its degradation and H4K20me1 depletion, leads to significant growth inhibition of HMCLs (N=10) and the murine cell lines 5T33MM and 5TGM1. MM cells treated with UNC-0379 presented a G0/G1 cell cycle arrest after 24h of treatment, followed by apoptosis 48h later. To confirm that SETD8 inhibition is as efficient on primary MM cells from patients, primary MM cells (N=8) were co-cultured with their bone marrow microenvironment and recombinant IL-6 and treated for 4 days with UNC-0379. Interestingly, treatment of MM patient samples with UNC-0379 reduces the percentage of myeloma cells (65%; P<0.005) without significantly affecting the non-myeloma cells, suggesting a specific addiction of primary myeloma cells to SETD8 activity. Melphalan is an alkylating agent commonly used in MM treatment. As SETD8 is known to be involved in the DNA damage response, we investigated the effect of its combination with Melphalan on HMCLs. Results show that this particular drug combination strongly enhances double strand breaks in HMCLs monitored using 53BP1 foci formation and gH2AX detection. This result emphasizes a potential role of SETD8 in DNA repair in MM cells. Furthermore, GSEA analysis of patients with high SETD8 expression highlighted a significant enrichment of genes involved in DNA repair, MYC-MAX targets and MAPK pathway. Our study is the first to demonstrate the importance of SETD8 for MM cells survival and suggest that SETD8 inhibition represent a promising strategy to improve conventional treatment of MM with DNA damaging agents. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 6 (8) ◽  
pp. e462-e462 ◽  
Author(s):  
J Ramachandran ◽  
L Santo ◽  
K T Siu ◽  
C Panaroni ◽  
N Raje

2019 ◽  
Vol 105 (3) ◽  
pp. 839-853
Author(s):  
Aglaia Kyrilli ◽  
David Gacquer ◽  
Vincent Detours ◽  
Anne Lefort ◽  
Frédéric Libert ◽  
...  

Abstract Background The early molecular events in human thyrocytes after 131I exposure have not yet been unravelled. Therefore, we investigated the role of TSH in the 131I-induced DNA damage response and gene expression in primary cultured human thyrocytes. Methods Following exposure of thyrocytes, in the presence or absence of TSH, to 131I (β radiation), γ radiation (3 Gy), and hydrogen peroxide (H2O2), we assessed DNA damage, proliferation, and cell-cycle status. We conducted RNA sequencing to profile gene expression after each type of exposure and evaluated the influence of TSH on each transcriptomic response. Results Overall, the thyrocyte responses following exposure to β or γ radiation and to H2O2 were similar. However, TSH increased 131I-induced DNA damage, an effect partially diminished after iodide uptake inhibition. Specifically, TSH increased the number of DNA double-strand breaks in nonexposed thyrocytes and thus predisposed them to greater damage following 131I exposure. This effect most likely occurred via Gα q cascade and a rise in intracellular reactive oxygen species (ROS) levels. β and γ radiation prolonged thyroid cell-cycle arrest to a similar extent without sign of apoptosis. The gene expression profiles of thyrocytes exposed to β/γ radiation or H2O2 were overlapping. Modulations in genes involved in inflammatory response, apoptosis, and proliferation were observed. TSH increased the number and intensity of modulation of differentially expressed genes after 131I exposure. Conclusions TSH specifically increased 131I-induced DNA damage probably via a rise in ROS levels and produced a more prominent transcriptomic response after exposure to 131I.


Sign in / Sign up

Export Citation Format

Share Document