Dissecting the Role of Thyrotropin in the DNA Damage Response in Human Thyrocytes after 131I, γ Radiation and H2O2

2019 ◽  
Vol 105 (3) ◽  
pp. 839-853
Author(s):  
Aglaia Kyrilli ◽  
David Gacquer ◽  
Vincent Detours ◽  
Anne Lefort ◽  
Frédéric Libert ◽  
...  

Abstract Background The early molecular events in human thyrocytes after 131I exposure have not yet been unravelled. Therefore, we investigated the role of TSH in the 131I-induced DNA damage response and gene expression in primary cultured human thyrocytes. Methods Following exposure of thyrocytes, in the presence or absence of TSH, to 131I (β radiation), γ radiation (3 Gy), and hydrogen peroxide (H2O2), we assessed DNA damage, proliferation, and cell-cycle status. We conducted RNA sequencing to profile gene expression after each type of exposure and evaluated the influence of TSH on each transcriptomic response. Results Overall, the thyrocyte responses following exposure to β or γ radiation and to H2O2 were similar. However, TSH increased 131I-induced DNA damage, an effect partially diminished after iodide uptake inhibition. Specifically, TSH increased the number of DNA double-strand breaks in nonexposed thyrocytes and thus predisposed them to greater damage following 131I exposure. This effect most likely occurred via Gα q cascade and a rise in intracellular reactive oxygen species (ROS) levels. β and γ radiation prolonged thyroid cell-cycle arrest to a similar extent without sign of apoptosis. The gene expression profiles of thyrocytes exposed to β/γ radiation or H2O2 were overlapping. Modulations in genes involved in inflammatory response, apoptosis, and proliferation were observed. TSH increased the number and intensity of modulation of differentially expressed genes after 131I exposure. Conclusions TSH specifically increased 131I-induced DNA damage probably via a rise in ROS levels and produced a more prominent transcriptomic response after exposure to 131I.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3369-3369
Author(s):  
Magali Humbert ◽  
Michaela Medova ◽  
Barbara Geering ◽  
Wieslawa Blank-Liss ◽  
Hans-Uwe Simon ◽  
...  

Abstract Abstract 3369 Intact DNA damage response pathways are important for genomic fidelity of cells in order to avoid tumor formation. On the other hand, inhibition of DNA repair provides an important mechanism to enhance the therapeutic efficacy of DNA damaging agents such as gamma-irradiation. Thus, it is important to identify novel players in DNA damage response that might represent novel targets for combination therapies. Death-associated protein kinases (DAPK) are serine/threonine kinases believed to be involved in cell death and autophagy mechanisms, whereby particularly the role of DAPK1 has previously been investigated. The DAPK family is composed of five members: DAPK1, DAPK2 (or DRP-1), DAPK3 (or ZIP kinase), DRAK1 and DRAK2. DAPK1 and DAPK2 share 80% homology in the catalytic domain. Generally, the role of DAPK in DNA damage responses is not well studied. To analyze the role of DAPK1 and DAPK2 in response to gamma-irradiation, we used p53 wild-type REH B-cell acute lymphoblastic leukemia (B-ALL) cells as a model. In response to irradiation, DAPK1 protein expression increased paralleled by an increased of total p53, phospho-Ser20-p53 and p21WAF1/CIP1. DAPK2 expression, however, did not increase. Since upregulation of p21WAF1/CIP1, a classical p53 target in response to DNA damage leads to cell cycle arrest, we asked whether knocking down DAPK1 or DAPK2 might affect the cell cycle. Interestingly, knocking down DAPK2 but not DAPK1 led to a significant increase of S-phase cells upon irradiation. Moreover, knocking down DAPK2 attenuated the induction of DAPK1 upon irradiation indicating a DAPK2-DAPK1 cascade in DNA damage responses. Next, given the significant role of p21WAF1/CIP1 and p53 in DNA damage responses, we tested if DAPK2 might directly participate in a novel signaling pathway by interacting with these proteins. Indeed, pull down assays revealed that p21WAF1/CIP1 and p53 are novel DAPK2 interacting proteins. Clearly, further experiments are needed to define the DAPK2-DAPK1-p53- p21WAF1/CIP1 network in DNA repair pathways. In conclusion, we identified a novel role for DAPK1 and DAPK2 in DNA damage responses of B-ALL cells and propose a novel DAPK2/DAPK1/p53/ p21WAF1/CIP1 DNA damage regulatory pathway. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4435-4435
Author(s):  
Herviou Laurie ◽  
Fanny Izard ◽  
Elke De Bruyne ◽  
Eva Desmedt ◽  
Anqi Ma ◽  
...  

Abstract Epigenetic regulation mechanisms - such as histone marks, DNA methylation and miRNA - are often misregulated in cancers and are associated with tumorigenesis and drug resistance. Multiple Myeloma (MM) is a malignant plasma cell disease that accumulates within the bone marrow. Epigenetic modifications in MM are associated not only with cancer development and progression, but also with resistance to chemotherapy. This epigenetic plasticity can be targeted with epidrugs, nowadays used in treatment of several cancers. We recently identified a significant overexpression of the lysine histone methyltransferase SETD8 in MM cells (HMCLs; N=40) compared with normal plasma cells (N=5) (P<0.001). SETD8 (also known as SET8, PR-Set7, KMT5A) is the sole enzyme responsible for the monomethylation of histone H4 at lysine 20 (H4K20me1) which has been linked to chromatin compaction and cell-cycle regulation. In addition, SETD8 induces the methylation of non-histone proteins, such as the replication factor PCNA, the tumor suppressor P53 and its stabilizing protein Numb. While SETD8-mediated methylation of P53 and Numb inhibits apoptosis, PCNA methylation upon SETD8 enhances the interaction with the Flap endonuclease FEN1 and promotes cancer cell proliferation. SETD8 is also implicated in DNA damage response, helping 53BP1 recruitment at DNA double-strand breaks. Consistent with this, overexpression of SETD8 is found in various types of cancer and has been directly implicated in breast cancer invasiveness and metastasis. A role of SETD8 in development of MM has however never been described. We found that high SETD8 expression is associated with a poor prognosis in 2 independent cohorts of newly diagnosed patients (UAMS-TT2 cohort - N=345 and UAMS-TT3 cohort - N=158). Specific SETD8 inhibition with UNC-0379 inhibitor, causing its degradation and H4K20me1 depletion, leads to significant growth inhibition of HMCLs (N=10) and the murine cell lines 5T33MM and 5TGM1. MM cells treated with UNC-0379 presented a G0/G1 cell cycle arrest after 24h of treatment, followed by apoptosis 48h later. To confirm that SETD8 inhibition is as efficient on primary MM cells from patients, primary MM cells (N=8) were co-cultured with their bone marrow microenvironment and recombinant IL-6 and treated for 4 days with UNC-0379. Interestingly, treatment of MM patient samples with UNC-0379 reduces the percentage of myeloma cells (65%; P<0.005) without significantly affecting the non-myeloma cells, suggesting a specific addiction of primary myeloma cells to SETD8 activity. Melphalan is an alkylating agent commonly used in MM treatment. As SETD8 is known to be involved in the DNA damage response, we investigated the effect of its combination with Melphalan on HMCLs. Results show that this particular drug combination strongly enhances double strand breaks in HMCLs monitored using 53BP1 foci formation and gH2AX detection. This result emphasizes a potential role of SETD8 in DNA repair in MM cells. Furthermore, GSEA analysis of patients with high SETD8 expression highlighted a significant enrichment of genes involved in DNA repair, MYC-MAX targets and MAPK pathway. Our study is the first to demonstrate the importance of SETD8 for MM cells survival and suggest that SETD8 inhibition represent a promising strategy to improve conventional treatment of MM with DNA damaging agents. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1265-1265
Author(s):  
Christine von Klitzing ◽  
Florian Bassermann ◽  
Stephan W. Morris ◽  
Christian Peschel ◽  
Justus Duyster

Abstract The nuclear interaction partner of ALK (NIPA) is a nuclear protein identified by our group in a screen for NPM-ALK interaction partners. We recently reported that NIPA is an F-box protein that assembles with SKP1, Cul1 and Roc1 to establish a novel SCF-type E3 ubiquitin ligase. The formation of the SCFNIPA complex is regulated by cell cycle-dependent phosphorylation of NIPA that restricts SCFNIPA assembly from G1- to late S-phase, thus allowing its substrates to be active from late S-phase throughout mitosis. Proteins involved in cell cycle regulation frequently play a role in DNA damage checkpoints. We therefore sought to determine whether NIPA has a function in the cellular response to genotoxic stress. For this reason we treated NIH/3T3 cells with various DNA-damaging agents. Surprisingly, we observed phosphorylation of NIPA in response to some of these agents, including UV radiation. This phosphorylation was cell cycle phase independent and thus independent of the physiological cell cycle dependent phosphorylation of NIPA. The relevant phosphorylation site is identical to the respective site in the course of cell cycle-dependent phosphorylation of NIPA. Thus, phosphorylation of NIPA upon genotoxic stress would inactivate the SCFNIPA complex in a cell cycle independent manner. Interestingly, this phosphorylation site lies within a consensus site of the Chk1/Chk2 checkpoint kinases. These kinases are central to DNA damage checkpoint signaling. Chk1 is activated by ATR in response to blocked replication forks as they occur after treatment with UV. We performed experiments using the ATM/ATR inhibitor caffeine and the Chk1 inhibitor SB218078 to investigate a potential role of Chk1 in NIPA phosphorylation. Indeed, we found both inhibitors to prevent UV-induced phosphorylation of NIPA. Current experiments applying Chk1 knock-out cells will unravel the role of Chk1 in NIPA phosphorylation. Additional experiments were performed to investigate a function for NIPA in DNA-damage induced apoptosis. In this regard, we observed overexpression of NIPA WT to induce apoptosis in response to UV, whereas no proapoptotic effect was seen with the phosphorylation deficient NIPA mutant. Therefore, the phosphorylated form of NIPA may be involved in apoptotic signaling pathways. In summary, we present data suggesting a cell cycle independent function for NIPA. This activity is involved in DNA damage response and may be involved in regulating apoptosis upon genotoxic stress.


2005 ◽  
Vol 23 (26) ◽  
pp. 6364-6369 ◽  
Author(s):  
Veronica Fernàndez ◽  
Elena Hartmann ◽  
German Ott ◽  
Elias Campo ◽  
Andreas Rosenwald

Mantle-cell lymphoma (MCL) is a well-defined subtype of B-cell non-Hodgkin's lymphomas (B-NHL), accounts for approximately 6% of all lymphoid neoplasms, and has a median survival of 3 to 4 years. The genetic hallmark of MCL is the chromosomal translocation t(11;14)(q13;q32) that leads to deregulation and upregulation of Cyclin D1, an important regulator of the G1 phase of the cell cycle. This genetic event is present in virtually all cases of MCL, whereas additional genetic alterations that occur in subsets of MCL have been described. Most of these alterations appear to disturb the cell cycle machinery/interfere with the cellular response to DNA damage, thus making MCL a paradigm for cell cycle and DNA damage response dysregulation in cancer in general. In particular, Cyclin D1 upregulation, genomic amplification of the cyclin-dependent kinase (CDK) -4, deletions of the CDK inhibitor p16INK4a and overexpression of BMI-1, a transcriptional repressor of the p16INK4a locus, are associated with dysregulation of the cell cycle machinery in MCL. The DNA damage response pathway is affected by frequent alterations of the ataxia-telangiectasia mutated (ATM) kinase as well as occasional inactivation of checkpoint kinase (CHK)-1 and CHK2 that are kinases that act downstream of ATM in response to detection of DNA damage. Moreover, p53 is frequently targeted by alterations in MCL. A recent gene expression profiling study defined the proliferation signature, a quantitative measure of gene expression of proliferation-associated genes as the strongest survival predictor available to date allowing the definition of prognostic MCL subgroups that differ in median survival by more than 5 years.


2015 ◽  
Vol 471 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Noritaka Yamaguchi ◽  
Ryuzaburo Yuki ◽  
Sho Kubota ◽  
Kazumasa Aoyama ◽  
Takahisa Kuga ◽  
...  

We analysed the role of c-Abl-mediated tyrosine phosphorylation of JunB in Adriamycin-induced DNA damage response. Tyrosine phosphorylation of JunB was found to be required for expression of the cell cycle inhibitor p21 upon Adriamycin stimulation.


2000 ◽  
Vol 275 (4) ◽  
pp. 2777-2785 ◽  
Author(s):  
Timothy K. MacLachlan ◽  
Kumaravel Somasundaram ◽  
Magda Sgagias ◽  
Yelena Shifman ◽  
Ruth J. Muschel ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4124-4124
Author(s):  
Olga Kutovaya ◽  
Stacy Hung ◽  
Hughes Christopher ◽  
Randy D Gascoyne ◽  
Morin Gregg ◽  
...  

Abstract Intro: Mantle cell lymphoma (MCL) accounts for 6% of non-Hodgkin lymphomas and represents a particularly challenging disease with patient outcomes inferior to most other lymphoma subtypes. Using targeted capture sequencing of MCL biopsy samples, we recently reported frequent mutations (18%) in UBR5, a gene encoding an E3 ubiquitin-protein ligase that has not been previously implicated in lymphomagenesis. All mutations were clustered within 100bp in or around exon 58 of UBR5 and truncate the reading frame or change a key lysine residue. These mutations are predicted to result in the loss of the conserved cysteine residue in the HECT-domain, which is responsible for binding the ubiquitin co-factor. The recurrence and clustering of UBR5 mutations suggest their critical pathogenic involvement in a subgroup of MCL that might be therapeutically targetable. The aim of this study is to determine UBR5 mutation-associated proteome changes and altered cell signaling. Methods: As seen in MCL patients, mutations in exon 58 of UBR5 were introduced to three MCL cell lines (Granta-519, Jeko-1, and Mino) using the CRISPR-Cas9 genome engineering tool. First, mass spectrometry-based immunoprecipitation proteomics (IP-MS) was employed to identify differences in UBR5 interacting partners between UBR5 mutant and wildtype (WT) cells. Candidate UBR5 interacting proteins were validated by flow cytometry, western blotting, co-immunoprecipitation, and immunofluorescence. Next, global proteomes of UBR5 mutants and WT were analyzed by Tandem Mass Tag (TMT)-based mass spectrometry quantification to identify proteins with differential expression due to the UBR5 mutations. Results: The IP-MS analysis of WT vs UBR5 mutants revealed histone and cell cycle control proteins as candidate differential UBR5 interacting proteins (p<0.05). Particularly, histones H1, H4, and H2AFX, as well as the cell cycle genes CDC5L, BUB3, MAP4, RAD50 and CDK11B were identified as candidate UBR5 interacting partners. The global proteome analysis identified a set of differentially expressed genes (mutant vs wt; p<0.05) that are common among the MCL cell lines with the same direction of change. Gene ontology analysis of this set revealed DNA damage response, chromosome organization, and cell cycle response pathways as the predominant pathways affected. Moreover, our preliminary functional studies indicate constitutive phosphorylation of H2AFX in UBR5 mutants vs WT in line with the role of UBR5 in DNA damage response. Conclusions: Our results are consistent with UBR5 functioning as a key regulator of cell signalling and strongly suggest UBR5 as a novel regulator of histone modifications and DNA damage response. These findings provide an experimentally valid platform for further functional investigation and testing of target therapies for MCL harbouring UBR5 mutations. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3761-3761
Author(s):  
Jason Farrar ◽  
Michael Ochs ◽  
David W Lee ◽  
C.C. Talbot ◽  
Jonathan Buckley ◽  
...  

Abstract While mutations of splicing and epigenetic factors have been reported in adult AML and related myeloid disorders, relatively few such changes have been identified in pediatric AML. We previously identified a chromatin remodeling helicase, PASG (SMARCA6, HELLS, LSH), by down-regulation in AML cell lines following cytokine withdrawal and identified an alternatively spliced variant lacking a highly conserved (STRAGGLG) domain. To assess the prevalence of this splicing variant (PASGΔ75) in pediatric AML, we tested 167 diagnostic specimens from the TARGET-AML cohort for fractional PASGΔ75 expression (PASGΔ75/PASG) using a discriminatory RT-qPCR assay. These studies demonstrated a broad, continuous distribution of PASGΔ75 with right skew (mean PASGΔ75: 26%, interquartile range: 9% – 41%) that was not significantly associated with cytogenetic class (inv16, t(8;21), MLL, normal) or FAB subtype. For further comparison, specimens were quantized by PASGΔ75 quartile. Given reported associations between loss of PASG function and abnormalities of genomic methylation, we tested 48 AML specimens at the extremes of the PASGΔ75 distribution for total 5-methylcytosine (5-mC) content by liquid chromatography/tandem mass spectrometry. The mean total methylation was significantly lower in the high compared to the low PASGΔ75 groups (mean 5-mC 3.95% vs. 4.22% of cytosine, p=0.015 Mann-Whitney). To identify specific regions of altered methylation, we used high-throughput sequencing of DNA enriched by pull-down with the methyl binding domain fragment of MBD2 (MBD-Seq). Comparison of summed methylation signal across regions flanking RefSeq transcriptional start sites (TSS) showed the expected decrease in methylation just upstream of the TSS in both groups. However, methylation more distal to the TSS was proportionally lower in PASGΔ75 high than PASGΔ75 low samples (Fig 1a). To evaluate methylation at CpG islands (CGI), UCSC CGI were scaled to 500 bp and MBD-Seq data were summed across 20Kb flanking CGI. While both groups showed the anticipated increase in methylation signal on CGI, methylation in the shore regions immediately flanking CGI was proportionally lower in high PASGΔ75 compared to low PASGΔ75 samples (Fig 1b), further suggesting epigenetic differences between these sample groups. Because we were unable to identify sequence variants in PASG intron 18 or flanking exons that might explain alternative splicing, we asked whether expression of PASGΔ75 was associated with global changes in transcript splicing. We evaluated gene expression patterns on the Affymetrix HuGene array, with assessment of alternative splicing using Partek software alternative splicing (altsplice) algorithm for quartile-grouped samples. In contrast to comparison of adjacent quartile groups, which showed modest changes in expression and relatively few transcripts with significant altsplice scores, comparison of the highest and lowest quartile samples showed marked changes in gene expression and a large number of alternatively spiced transcripts as assessed by significance of the altsplice score (Fig 2). In addition to splicing changes, these analyses suggested marked differences in gene expression patterns of AML specimens grouped by PASGΔ75 quartile, with clear separation of Q1 and Q4 samples by principal components analysis. Using a conservative Wilcoxon gene sets test and limiting ourselves to small, curated Biocarta pathways, we found expression patterns associated with high deletion variant expression strongly linked to overlapping pathways involving DNA repair, replication, and cell cycle progression. Table Pathways (Biocarta) Pathway Class Benjamini Hochberg Corrected p-Value ATR/BRCA1/BRCA2 DNA Damage Response 1.3E-6 RB/DNA Damage DNA Damage Response 3.5E-3 p27 Phosphorylation Cell Cycle Progression 3.5E-3 G2/M Checkpoint Cell Cycle Progression 3.5E-3 G1/S Checkpoint Cell Cycle Progression 4.1E-3 PLK3 Cell Cycle Progression 4.1E-3 MEF2D Apoptosis 0.01 SRC/PTPa Cell Cycle Progression 0.02 Mitochondrial Acetyl-Co Shuttle Metabolism 0.02 p53 Signaling DNA Damage Response 0.04 E2F-1 Cell Cycle Progression 0.04 ATM Signaling DNA Damage Response 0.04 These data suggest the existence of a previously unrecognized AML subclass characterized by widespread and coordinated changes in RNA expression, alternative transcript splicing, and epigenetic modifications. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roxane M. Bouten ◽  
Clifton L. Dalgard ◽  
Anthony R. Soltis ◽  
John E. Slaven ◽  
Regina M. Day

AbstractThe vascular system is sensitive to radiation injury, and vascular damage is believed to play a key role in delayed tissue injury such as pulmonary fibrosis. However, the response of endothelial cells to radiation is not completely understood. We examined the response of primary human lung microvascular endothelial cells (HLMVEC) to 10 Gy (1.15 Gy/min) X-irradiation. HLMVEC underwent senescence (80–85%) with no significant necrosis or apoptosis. Targeted RT-qPCR showed increased expression of genes CDKN1A and MDM2 (10–120 min). Western blotting showed upregulation of p2/waf1, MDM2, ATM, and Akt phosphorylation (15 min–72 h). Low levels of apoptosis at 24–72 h were identified using nuclear morphology. To identify novel pathway regulation, RNA-seq was performed on mRNA using time points from 2 to 24 h post-irradiation. Gene ontology and pathway analysis revealed increased cell cycle inhibition, DNA damage response, pro- and anti- apoptosis, and pro-senescence gene expression. Based on published literature on inflammation and endothelial-to-mesenchymal transition (EndMT) pathway genes, we identified increased expression of pro-inflammatory genes and EndMT-associated genes by 24 h. Together our data reveal a time course of integrated gene expression and protein activation leading from early DNA damage response and cell cycle arrest to senescence, pro-inflammatory gene expression, and endothelial-to-mesenchymal transition.


Sign in / Sign up

Export Citation Format

Share Document