scholarly journals The Hypomorphic Gata1low Mutation Induces Fibrosis in Multiple Organs

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3059-3059
Author(s):  
Maria Zingariello ◽  
Laura Sancillo ◽  
Fabrizio Martelli ◽  
Paola Verachi ◽  
Claudio Bardelli ◽  
...  

Abstract Mice carrying the hypomorphic mutation which reduces the transcription factor GATA1 in megakaryocytes (Gata1low mice), develop by 8-months myelofibrosis a phenotype resembling primary myelofibrosis, the most severe of myeloproliferative neoplasms (Vannucchi et al Blood 2002;100:1123). The high levels of TGF-β expressed by the abnormal Gata1low megakaryocytes that drive myelofibrosis in these mice alter the bone marrow (BM) expression profiling up-regulating expression of the transcription factor c-Jun (Ciaffoni et al BCD 2015; 54:234). Recently, Dr. Weissman reported that c-Jun over-expression in response to TGF-β activation induces in mice fibrosis in multiple organs (Werning et al PNAS 2017, 114, 4757), suggesting that also Gata1low mice may develop multi-organ fibrosis. To test this hypothesis, we compared morphology (by haematoxylin-eosin staining) and fibrosis (reticulin fibres by trichrome Mallory and collagen fibres by Gomory or Sirius Red Picrate staining) of organs from Gata 1low and wild-type (WT) mice at 1-, 8- and 15-months of age (3 mice/group). With age, the organs from WT mice presented histological abnormalities consistent with the mild one expected for being associated with aging and were seldom positive for fibrosis. By contrast, all the organs from Gata1low mice analysed had profound abnormal morphologies with reticulin or collagen fibers detectable, in addition to BM and spleen, in skin, lung, and kidney in an age-specific fashion (Fig 1). Gata1lowskin was thicker than normal and the connective layer presented numerous reticulin strikes already by 1-month and heavily dense connective regions strongly positive for collagen fibres by 8-15 months, resembling the skin from scleroderma patients. In lung, the alveoli had thickened walls with reticulin fibers detectable by 8-months and collagen bundles by 15-months near the bronchus walls. The abnormal morphology of kidney included reduced numbers of glomeruli and poorly organized cortical parenchyma. Reticulin and collagen fibres were observed in the medullary and nephron region by 8- and 15-months, respectively. In heart, cardiomyocytes presented a strong reduction of intercalary disks by 8-months and reticulin fibers were detectable at 15-months, suggesting that this mild fibrosis is driven by lung insufficiency. The liver presented abnormal localization and morphology of hepatocytes and presence of extramedullary hematopoiesis in perisinusoid areas. Sirius Red Picrate staining revealed few reticulin fibres mostly within erythroid islands. To clarify the mechanisms leading to multi-organ fibrosis in Gata1low mice, the transcription signature of 8-months Gata1low BM was compared with that published for murine liver, lung and kidney fibrosis (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? token = ijgpwgsyjhwpdoj&acc = GSE89630). Gata1low BM presented abnormal expression of 1724 genes (821 up- and 903 down). Pathway analyses indicated that most of the down genes were in the Gata1 pathway while the most prominent up genes were in the c-Jun, EZH2, SCL and p53 pathways. Some of the gene abnormal in Gata1low BM were also abnormal in liver (64), lung (29) and kidney (432) fibrosis. Only 28 genes were abnormal in more than one organ (25 liver and kidney, 7 lung). These common genes were obvious markers for fibrosis (5 collagen genes, fibronectin, TGF-β) and did not include c-Jun. Among genes up in Gata1low BM, kidney and liver there was lipocalin 2 (LCN2), a growth factor overexpressed in primary myelofibrosis patients (Lu et al Blood 2015;126:972) that exerts positive and negative effects, respectively, on fibrosis in BM and liver. By comparing the plasma levels of LCN2 in Gata1low and WT mice at 8-9 -and 15-17-months (8-29 mice/group), we determined that levels of LNC2 do not change with age in WT mice but increase by 3-fold in old Gata1low mice (p=0.028), explaining why liver was not one of the organs in which the mutants develop fibrosis. In conclusion, in addition to myelofibrosis, Gata1low mice develop fibrosis in skin, lung and kidney but not in heart and liver and represent genetic models for studies on the pathogenesis of fibrosis in multiple organs. Moreover, these results suggest that although the initiation factor(s) for fibrosis in the various organs are likely different, most of them are expressed by Gata1low megakaryocytes highlighting the importance for studies on the secretome profile of these cells. Disclosures No relevant conflicts of interest to declare.

2017 ◽  
Vol 114 (18) ◽  
pp. 4757-4762 ◽  
Author(s):  
Gerlinde Wernig ◽  
Shih-Yu Chen ◽  
Lu Cui ◽  
Camille Van Neste ◽  
Jonathan M. Tsai ◽  
...  

Fibrotic diseases are not well-understood. They represent a number of different diseases that are characterized by the development of severe organ fibrosis without any obvious cause, such as the devastating diseases idiopathic pulmonary fibrosis (IPF) and scleroderma. These diseases have a poor prognosis comparable with endstage cancer and are uncurable. Given the phenotypic differences, it was assumed that the different fibrotic diseases also have different pathomechanisms. Here, we demonstrate that many endstage fibrotic diseases, including IPF; scleroderma; myelofibrosis; kidney-, pancreas-, and heart-fibrosis; and nonalcoholic steatohepatosis converge in the activation of the AP1 transcription factor c-JUN in the pathologic fibroblasts. Expression of the related AP1 transcription factor FRA2 was restricted to pulmonary artery hypertension. Induction of c-Jun in mice was sufficient to induce severe fibrosis in multiple organs and steatohepatosis, which was dependent on sustained c-Jun expression. Single cell mass cytometry revealed that c-Jun activates multiple signaling pathways in mice, including pAkt and CD47, which were also induced in human disease. αCD47 antibody treatment and VEGF or PI3K inhibition reversed various organ c-Jun–mediated fibroses in vivo. These data suggest that c-JUN is a central molecular mediator of most fibrotic conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alessandra Scagliola ◽  
Annarita Miluzio ◽  
Gabriele Ventura ◽  
Stefania Oliveto ◽  
Chiara Cordiglieri ◽  
...  

AbstractA postprandial increase of translation mediated by eukaryotic Initiation Factor 6 (eIF6) occurs in the liver. Its contribution to steatosis and disease is unknown. In this study we address whether eIF6-driven translation contributes to disease progression. eIF6 levels increase throughout the progression from Non-Alcoholic Fatty Liver Disease (NAFLD) to hepatocellular carcinoma. Reduction of eIF6 levels protects the liver from disease progression. eIF6 depletion blunts lipid accumulation, increases fatty acid oxidation (FAO) and reduces oncogenic transformation in vitro. In addition, eIF6 depletion delays the progression from NAFLD to hepatocellular carcinoma, in vivo. Mechanistically, eIF6 depletion reduces the translation of transcription factor C/EBPβ, leading to a drop in biomarkers associated with NAFLD progression to hepatocellular carcinoma and preserves mitochondrial respiration due to the maintenance of an alternative mTORC1-eIF4F translational branch that increases the expression of transcription factor YY1. We provide proof-of-concept that in vitro pharmacological inhibition of eIF6 activity recapitulates the protective effects of eIF6 depletion. We hypothesize the existence of a targetable, evolutionarily conserved translation circuit optimized for lipid accumulation and tumor progression.


Author(s):  
Maik Luu ◽  
Rossana Romero ◽  
Jasmin Bazant ◽  
Elfadil Abass ◽  
Sabrina Hartmann ◽  
...  

2012 ◽  
Vol 50 (01) ◽  
Author(s):  
C Trierweiler ◽  
K Willim ◽  
HE Blum ◽  
P Hasselblatt

2012 ◽  
Vol 224 (03) ◽  
Author(s):  
I Kuznetsova ◽  
K Welte ◽  
J Skokowa

2007 ◽  
Vol 213 (2) ◽  
pp. 219-228 ◽  
Author(s):  
MH De Borst ◽  
J Prakash ◽  
WBWH Melenhorst ◽  
MC van den Heuvel ◽  
RJ Kok ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document