scholarly journals Phase 1 Study of CD19/CD22 Bispecific Chimeric Antigen Receptor (CAR) Therapy in Children and Young Adults with B Cell Acute Lymphoblastic Leukemia (ALL)

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 898-898 ◽  
Author(s):  
Liora M Schultz ◽  
Kara L. Davis ◽  
Christina Baggott ◽  
Christie Chaudry ◽  
Anne Cunniffe Marcy ◽  
...  

Abstract Chimeric Antigen Receptor (CAR) therapy targeting CD19 achieves complete remission (CR) rates of 70%-90% in relapsed/refractory B-ALL. Relapse due to loss of the CD19 targeted epitope presents a therapeutic challenge as evidenced by the largest global pediatric CD19-CAR experience which showed 15 of 16 relapses to be explained by CD19 downregulation (Maude et al, NEJM 2018). Alternatively targeting CD22 using CD22-CAR therapy has demonstrated a CR rate of approximately 70% in both CD19+ and CD19- B-ALL, however relapse due to CD22 downregulation limits the curative potential of singularly-targeting CD22 (Fry et al, Nat Med. 2018). We hypothesized that simultaneous targeting of CD19 and CD22 via a bispecific CAR-T cell would be a safe and tolerable treatment strategy in relapsed/refractory B-cell ALL and address immune evasion. Here, we report the first clinical experience in pediatric patients using bispecific CD19-CD22 CAR T cells. We describe a single institution phase I dose escalation study in pediatric patients with relapsed or refractory B cell ALL. We utilized lentiviral transduction of a bivalent CAR construct incorporating the fmc63 CD19 and m971 CD22 single chain variable fragments (scFvs) used in clinically tested CAR constructs and a 41BB costimulatory endodomain (Fry et al, Nat Med. 2018). Our primary objectives are feasibility of production of this bivalent CAR and safety at 3 dose escalation levels (1x106, 3x106 and 1x107 CAR T cells/kg). Clinical response assessment is evaluated as a secondary aim. All patients described received lymphodepletion with fludarabine (25mg/m2 x 3 days) and cyclophosphamide (900mg/m2 x 1) followed by fresh or cryopreserved CAR T cell infusion after a 7-9 day production time. Patients were prospectively monitored at predefined intervals for disease response and correlative assessments. Four pediatric patients with precursor-B ALL, age 2-17, have been enrolled and treated with CD19/CD22 bispecific CAR T cells at dose level 1 (1x106) [Table 1]. Three patients entered CAR therapy with low disease burden detected by minimal residual disease (MRD) alone and 1 patient initiated therapy with 12% bone marrow blasts. All patients were CNS1 at time of treatment. The toxicity profile mirrored that of the singular CD19 and CD22 CAR experience with 3 patients experiencing reversible CRS (2 Grade I, 1 Grade II), onset day 3-8, and 2 patients experiencing grade I neurotoxicity, onset day 3-9. In our cohort, we experienced lower grade toxicities than previously reported, likely due to a mean lower disease burden. Only 1 patient with CRS met criteria for tocilizumab and this patient was the singular study patient treated with higher burden disease. Neurotoxicity was managed with supportive care and fully reversible. Peripheral blood flow cytometry analysis detects circulating CAR by day 6 in all patients and demonstrates peak CAR expansion between day 6-10. Peak CAR T expansion reached levels of 10-25% of total T cells with inter-patient variability in CD4 and CD8 predominance, favoring CD8 expansion in 3 of 4 patients. Clinical symptoms and inflammatory markers expectedly correlate with peak CAR expansion. Four of 4 patients achieved complete remission (CR) at day 28 post-CD19/CD22 bispecific CAR therapy. Three of 4 patients demonstrated MRD- remissions by flow cytometry and of these, next generation sequencing (NGS) was negative where available (N=2). Multi-parametric CyTOF studies permitting CAR T cell phenotyping in conjunction with single cell TCR tracking, proteomics, epigenomics and cytokine profiling are ongoing and will be used to further characterize persisting CAR T cells and define inter-product and inter-patient variability. In this phase I study, we demonstrate safety and tolerability of this bispecific CD19/CD22 CAR at a dose of 1x106 CAR T cells/kg in pediatric patients with relapsed/refractory B cell ALL. The CD19/22-bispecific CAR mediated antileukemic activity in 100% of patients studied thus far. Long-term follow up and further accrual will be required to inform the effect of bispecific CAR targeting on surface antigen remodeling. Disclosures Muffly: Adaptive Biotechnologies: Research Funding; Shire Pharmaceuticals: Research Funding. Miklos:Genentech: Research Funding; Kite - Gilead: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Pharmacyclics - Abbot: Consultancy, Research Funding; Adaptive Biotechnologies: Consultancy, Research Funding; Novartis: Consultancy, Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 776-776
Author(s):  
Claire Roddie ◽  
Maeve A O'Reilly ◽  
Maria A V Marzolini ◽  
Leigh Wood ◽  
Juliana Dias Alves Pinto ◽  
...  

Introduction: 2nd generation CD19 CAR T cells show unprecedented efficacy in B-ALL, but several challenges remain: (1) scaling manufacture to meet patient need and (2) feasibility of generating products from lymphopenic patients post allogeneic stem cell transplant (allo-SCT). To overcome these issues we propose: (1) use of the CliniMACS Prodigy (Miltenyi Biotec), a semi-automated cGMP platform that simplifies CAR T cell manufacture and (2) the use of matched donor T cells to overcome the challenge posed by patient lymphopenia, albeit this may come with a heightened risk of graft versus host disease (GvHD). CARD (NCT02893189) is a Phase I study of matched donor derived CD19 CAR T cells generated on the CliniMACS Prodigy in 14 adult patients with relapsed/refractory (r/r) B ALL following allo-SCT. We additionally explore the requirement for lymphodepletion (LD) in the allogeneic CAR T cell setting and report on the incidence of GvHD with this therapy. Methods: Manufacturing: CARD utilises non-mobilised matched donor leucapheresate to manufacture 2nd generation CD19CAR T cells using a closed CliniMACS® Prodigy/ TransACTTM process. Study design: Eligible subjects are aged 16-70y with r/r B ALL following allo SCT. Study endpoints include feasibility of CD19CAR T cell manufacture from allo-SCT donors on the CliniMACS Prodigy and assessments of engraftment and safety including GvHD. To assess the requirement for LD prior to CD19CAR T cells in lymphopenic post-allo-SCT patients, the study is split into Cohort 1 (no LD) and Cohort 2 (fludarabine (30 mg/m2 x3) and cyclophosphamide (300mg/m2 x3)). To mitigate for the potential GvHD risk, cell dosing on study mirrors conventional donor lymphocyte infusion (DLI) schedules and is based on total CD3+ (not CAR T) cell numbers: Dose 1=1x106/kg CD3+ T cells; Dose 2= 3x106/kg CD3+ T cells; Dose 3= 1x107/kg CD3+ T cells. Results: As of 26 July 2019, 17 matched allo SCT donors were leukapheresed and 16 products were successfully manufactured and QP released. Patient demographics are as follows: (1) median patient age was 43y (range 19-64y); (2) 4/17 had prior blinatumomab and 5/17 prior inotuzumab ozogamicin; (3) 7/17 had myeloablative allo SCT and 10/17 reduced intensity allo SCT of which 6/17 were sibling donors and 12/17 were matched unrelated donors. No patients with haploidentical transplant were enrolled. To date, 12/16 patients have received at least 1 dose of CD19CAR T cells: 7/16 on Cohort 1 and 5/16 on Cohort 2 (2/16 are pending infusion on Cohort 2 and 2/16 died of fungal infection prior to infusion). Median follow-up for all 12 patients is 22.9 months (IQR 2.9-25.9; range 0.7 - 25.9). At the time of CAR T cell infusion, 7/12 patients were in morphological relapse with >5% leukemic blasts. Despite this, CD19CAR T cells were administered safely: only 2/12 patients experienced Grade 3 CRS (UPenn criteria), both in Cohort 1, which fully resolved with Tocilizumab and corticosteroids. No patients experienced ≥Grade 3 neurotoxicity and importantly, no patients experienced clinically significant GvHD. In Cohort 1 (7 patients), median peak CAR expansion by flow was 87 CD19CAR/uL blood whereas in Cohort 2 (5 patients to date), median peak CAR expansion was 1309 CD19CAR/uL blood. This difference is likely to reflect the use of LD in Cohort 2. CAR T cell persistence by qPCR in Cohort 1 is short, with demonstrable CAR in only 2/7 treated patients at Month 2. Data for Cohort 2 is immature, but this will also be reported at the meeting in addition to potential mechanisms underlying the short persistence observed in Cohort 1. Of the 10 response evaluable patients (2/12 pending marrow assessment), 9/10 (90%) achieved flow/molecular MRD negative CR at 6 weeks. 2/9 responders experienced CD19 negative relapse (one at M3, one at M5) and 3/9 responders experienced CD19+ relapse (one at M3, one at M9, one at M12). 4/10 (40%) response evaluable patients remain on study and continue in flow/molecular MRD negative remission at a median follow up of 11.9 months (range 2.9-25.9). Conclusions: Donor-derived matched allogeneic CD19 CAR T cells are straightforward to manufacture using the CliniMACS Prodigy and deliver excellent early remission rates, with 90% MRD negative CR observed at Week 6 in the absence of severe CAR associated toxicity or GvHD. Peak CAR expansion appears to be compromised by the absence of LD and this may lead to a higher relapse rate. Updated results from Cohorts 1 and 2 will be presented. Disclosures Roddie: Novartis: Consultancy; Gilead: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau. O'Reilly:Kite Gilead: Honoraria. Farzaneh:Autolus Ltd: Equity Ownership, Research Funding. Qasim:Autolus: Equity Ownership; Orchard Therapeutics: Equity Ownership; UCLB: Other: revenue share eligibility; Servier: Research Funding; Bellicum: Research Funding; CellMedica: Research Funding. Linch:Autolus: Membership on an entity's Board of Directors or advisory committees. Pule:Autolus: Membership on an entity's Board of Directors or advisory committees. Peggs:Gilead: Consultancy, Speakers Bureau; Autolus: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4810-4810
Author(s):  
Mark B. Geyer ◽  
Briana Cadzin ◽  
Elizabeth Halton ◽  
Peter Kane ◽  
Brigitte Senechal ◽  
...  

Abstract Background: Autologous CD19-targeted chimeric antigen receptor-modified (CAR) T-cell therapy leads to complete responses (CR) in patients (pts) with (w/) relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL, >80% CR rate) and diffuse large B-cell lymphoma (DLBCL, ~40-55% CR rate). However, following fludarabine/cyclophosphamide (Flu/Cy) conditioning and CAR T-cell therapy w/ a CD28 costimulatory domain (e.g. 19-28z CAR T-cells), rates of grade ≥3 ICANS and grade ≥3 cytokine release syndrome (CRS) in pts w/ R/R DLBCL and morphologic R/R B-ALL exceed 30%. CRS and ICANS are associated w/ considerable morbidity, including increased length of hospitalization, and may be fatal. Host monocytes appear to be the major reservoir of cytokines driving CRS and ICANS post-CAR T-cell therapy (Giavradis et al. and Norelli et al., Nature Medicine, 2018). Circulating monocytic myeloid-derived suppressor cells (MDSCs) may also blunt efficacy of 19-28z CAR T-cells in R/R DLBCL (Jain et al., Blood, 2021). The CD45-targeted antibody radioconjugate (ARC) 131-I apamistamab is being investigated at myeloablative doses as conditioning prior to hematopoietic cell transplantation in pts w/ R/R acute myeloid leukemia. However, even at low doses (4-20 mCi), transient lymphocyte and blast reduction are observed. Preclinical studies in C57BL/6 mice demonstrate low-dose anti CD45 radioimmunotherapy (100 microCi) transiently depletes >90% lymphocytes, including CD4/CD8 T-cells, B-cells, NK cells, and T-regs, as well as splenocytes and MDSCs, w/ negligible effect on bone marrow (BM) hematopoietic stem cells (Dawicki et al., Oncotarget, 2020). We hypothesized a higher, yet nonmyeloablative dose of 131-I apamistamab may achieve more sustained, but reversible depletion of lymphocytes and other CD45 + immune cells, including monocytes thought to drive CRS/ICANS. We additionally hypothesized this approach (vs Flu/Cy) prior to CAR T-cell therapy would promote CAR T-cell expansion while reducing CSF levels of monocyte-derived cytokines (e.g. IL-1, IL-6, and IL-10), thus lowering the risk of severe ICANS (Fig 1A). Study design and methods: We are conducting a single-institution pilot study of 131-I apamistamab in lieu of Flu/Cy prior to 19-28z CAR T-cells in adults w/ R/R BALL or DLBCL (NCT04512716; Iomab-ACT); accrual is ongoing. Pts are eligible for leukapheresis if they are ≥18 years-old w/ R/R DLBCL (de novo or transformed) following ≥2 chemoimmunotherapy regimens w/ ≥1 FDG-avid measurable lesion or B-ALL following ≥1 line of multi-agent chemotherapy (R/R following induction/consolidation; prior 2 nd/3 rd gen TKI required for pts w/ Ph+ ALL) w/ ≥5% BM involvement and/or FDG-avid extramedullary disease, ECOG performance status 0-2, and w/ appropriate organ function. Active or prior CNS disease is not exclusionary. Pts previously treated w/ CD19-targeted CAR T-cell therapy are eligible as long as CD19 expression is retained. See Fig 1B/C: Post-leukapheresis, 19-28z CAR T-cells are manufactured as previously described (Park et al., NEJM, 2018). Bridging therapy is permitted at investigator discretion. Thyroid blocking is started ≥48h pre-ARC. 131-I apamistamab 75 mCi is administered 5-7 days pre-CAR T-cell infusion to achieve total absorbed marrow dose ~200 cGy w/ remaining absorbed dose <25 cGy at time of T-cell infusion. 19-28z CAR T-cells are administered as a single infusion (1x10 6/kg, B-ALL pts; 2x10 6/kg, DLBCL pts). The primary objective is to determine safety/tolerability of 131-I apamistamab 75 mCi given prior to 19-28z CAR T-cells in pts w/ R/R B-ALL/DLBCL. Secondary objectives include determining incidence/severity of ICANS and CRS, anti-tumor efficacy, and 19-28z CAR T-cell expansion/persistence. Key exploratory objectives include describing the cellular microenvironment following ARC and 19-28z CAR T-cell infusion using spectral cytometry, as well as cytokine levels in peripheral blood and CRS. The trial utilizes a 3+3 design in a single cohort. If dose-limiting toxicity (severe infusion-related reactions, treatment-resistant severe CRS/ICANS, persistent regimen-related cytopenias, among others defined in protocol) is seen in 0-1 of the first 3 pts treated, then up to 6 total (up to 3 additional) pts will be treated. We have designed this study to provide preliminary data to support further investigation of CD45-targeted ARCs prior to adoptive cellular therapy. Figure 1 Figure 1. Disclosures Geyer: Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Actinium Pharmaceuticals, Inc: Research Funding; Amgen: Research Funding. Geoghegan: Actinium Pharmaceuticals, Inc: Current Employment. Reddy: Actinium Pharmaceuticals: Current Employment, Current holder of stock options in a privately-held company. Berger: Actinium Pharmaceuticals, Inc: Current Employment. Ludwig: Actinium Pharmaceuticals, Inc: Current Employment. Pandit-Taskar: Bristol Myers Squibb: Research Funding; Bayer: Research Funding; Clarity Pharma: Research Funding; Illumina: Consultancy, Honoraria; ImaginAb: Consultancy, Honoraria, Research Funding; Ymabs: Research Funding; Progenics: Consultancy, Honoraria; Medimmune/Astrazeneca: Consultancy, Honoraria; Actinium Pharmaceuticals, Inc: Consultancy, Honoraria; Janssen: Research Funding; Regeneron: Research Funding. Sauter: Genmab: Consultancy; Celgene: Consultancy, Research Funding; Precision Biosciences: Consultancy; Kite/Gilead: Consultancy; Bristol-Myers Squibb: Research Funding; GSK: Consultancy; Gamida Cell: Consultancy; Novartis: Consultancy; Spectrum Pharmaceuticals: Consultancy; Juno Therapeutics: Consultancy, Research Funding; Sanofi-Genzyme: Consultancy, Research Funding. OffLabel Disclosure: 131-I apamistamab and 19-28z CAR T-cells are investigational agents in treatment of ALL and DLBCL


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4193-4193 ◽  
Author(s):  
Nirav N Shah ◽  
Fenlu Zhu ◽  
Carolyn Taylor ◽  
Dina Schneider ◽  
Winfried Krueger ◽  
...  

Abstract Background: CAR-T cell therapy directed against the CD19 antigen is a breakthrough treatment for patients (pts) with relapsed/refractory (R/R) B-cell NHL. Despite impressive outcomes, not all pts respond and many that respond still relapse. Affordability and accessibility are further considerations that limit current commercial models of CAR-T products. Commercial CAR-T manufacturing is complex, time consuming, and expensive with a supply chain starting at the treating center with apheresis of mononuclear cells, cryopreservation, and shipping to and from a centralized third-party manufacturing site. We addressed these limitations in a Phase 1 clinical trial evaluating a first-in-human bispecific tandem CAR-T cell directed against both CD19 and CD20 (CAR-20.19-T) antigens for pts with R/R B-cell NHL. Through dual targeting we hope to improve response rates and durability of response while limiting antigen escape. We eliminated third party shipping logistics utilizing the CliniMACS Prodigy, a compact tabletop device that allows for automated manufacturing of CAR-T cells within a GMP compliant environment within the hospital. Most materials and reagents used to produce the CAR-T cell product were single-sourced from the device manufacturer. Methods: Phase 1 (NCT03019055), single center, dose escalation + expansion study to demonstrate feasibility and safety of locally manufactured second generation 41BB + CD3z CAR-20.19-T cells via the CliniMACS Prodigy. Feasibility was measured by ability to generate a target CAR-20.19-T cell dose for a minimum of 75% of subjects. Safety was assessed by the presence of dose limiting toxicities (DLTs) through 28 days post-infusion. Dose was escalated in a 3+3 fashion with a starting dose of 2.5 x 10^5 cells/kg, a target DLT rate <33%, and a goal treatment dose of 2.5 x 10^6 cells/kg. Adults with R/R Diffuse Large B-cell Lymphoma (DLBCL), Follicular Lymphoma (FL), Mantle Cell Lymphoma (MCL) or Chronic Lymphocytic Leukemia (CLL) were eligible. CAR-T production was set for a 14-day manufacturing process. Day 8 in-process testing was performed to ensure quality and suitability of CAR-T cells for a potential fresh infusion. On Day 10, pts eligible for a fresh CAR-T infusion initiated lymphodepletion (LDP) chemotherapy with fludarabine 30 mg/m2 x 3 days and cyclophosphamide 500 mg/m2 x 1 day, and cells were administered after harvest on Day 14. Pts ineligible for fresh infusion received cryopreserved product and LDP was delayed accordingly. Results: 6 pts have been enrolled and treated with CAR-20.19-T cells: 3 pts at 2.5 x 10^5 cells/kg and 3 pts at 7.5 x 10^5 cells/kg. Median age was 53 years (48-62). Underlying disease was MCL in 3 pts, DLBCL in 2 pts, and CLL in 1 patient. Baseline data and prior treatments are listed in Table 1. CAR-T production was successful in all runs and all pts received their target dose. Three pts received fresh CAR-T cells and 3 pts received CAR-T cells after cryopreservation. To date there are no DLTs to report. No cases of Grade 3/4 cytokine release syndrome (CRS) or neurotoxicity (NTX) were observed. One patient had Grade 2 CRS and Grade 2 NTX requiring intervention. The other had self-limited Grade 1 CRS and Grade 1 NTX. Median time to development of CRS was Day +11 post-infusion. All pts had neutrophil recovery (ANC>0.5 K/µL) by Day 28. Response at Day 28 (Table 2) is as follows: 2/6 pts achieved a complete response (CR), 2/6 achieved a partial response (PR), and 2/6 had progressive disease (PD). One subject with a PR subsequently progressed at Day 90. The 3 pts who did progress all underwent a repeat biopsy, and all retained either CD19 or CD20 positivity. Pts are currently being enrolled at the target dose (2.5 x 10^6 cells/kg) and updated results will be provided at ASH. Conclusions: Dual targeted anti-CD19 and anti-CD20 CAR-T cells were successfully produced for all pts demonstrating the feasibility of a point-of-care manufacturing process via the CliniMACS Prodigy device. With no DLTs or Grade 3-4 CRS or NTX to report, and 2/6 heavily pre-treated pts remaining in CR at 3 and 9 months respectively our approach represents a feasible and promising alternative to existing CAR-T models and costs. Down-regulation of both target antigens was not identified in any patient following CAR-T infusion, and in-process studies suggest that a shorter manufacturing timeline is appropriate for future trials (10 days). Disclosures Shah: Juno Pharmaceuticals: Honoraria; Lentigen Technology: Research Funding; Oncosec: Equity Ownership; Miltenyi: Other: Travel funding, Research Funding; Geron: Equity Ownership; Exelexis: Equity Ownership. Zhu:Lentigen Technology Inc., A Miltenyi Biotec Company: Research Funding. Schneider:Lentigen Technology Inc., A Miltenyi Biotec Company: Employment. Krueger:Lentigen Technology Inc., A Miltenyi Biotec Company: Employment. Worden:Lentigen Technology Inc., A Miltenyi Biotec Company: Employment. Hamadani:Sanofi Genzyme: Research Funding, Speakers Bureau; Merck: Research Funding; Janssen: Consultancy; MedImmune: Consultancy, Research Funding; Cellerant: Consultancy; Celgene Corporation: Consultancy; Takeda: Research Funding; Ostuka: Research Funding; ADC Therapeutics: Research Funding. Johnson:Miltenyi: Research Funding. Dropulic:Lentigen, A Miltenyi Biotec company: Employment. Orentas:Lentigen Technology Inc., A Miltenyi Biotec Company: Other: Prior Employment. Hari:Takeda: Consultancy, Honoraria, Research Funding; Janssen: Honoraria; Kite Pharma: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Spectrum: Consultancy, Research Funding; Bristol-Myers Squibb: Consultancy, Research Funding; Amgen Inc.: Research Funding; Sanofi: Honoraria, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1680-1680 ◽  
Author(s):  
Alexandre V. Hirayama ◽  
Jordan Gauthier ◽  
Kevin A. Hay ◽  
Alyssa Sheih ◽  
Sindhu Cherian ◽  
...  

Abstract Introduction Autologous T cells engineered to express a CD19-specific chimeric antigen receptor (CAR) have shown high overall response rates (ORR) in otherwise treatment-refractory CD19+ B-cell non-Hodgkin lymphoma (NHL); however, not all patients (pts) achieve complete remission (CR). PD-L1 expression on tumor cells and/or other tissues could impair the function of PD-1+ CAR-T cells and the efficacy of CD19 CAR-T cell immunotherapy. PD-1 pathway blockade may enhance the function and antitumor activity of CD19 CAR-T cells. Here we report preliminary data from a phase 1 dose-finding study (NCT02706405) of the safety and feasibility of combination therapy with JCAR014 CD19-specific 4-1BB-costimulated CAR-T cells and escalating doses of durvalumab, an anti-PD-L1 monoclonal antibody, in adults with relapsed/refractory aggressive B-cell NHL. Methods Pts are treated in one of two groups. All pts receive lymphodepletion chemotherapy with cyclophosphamide and fludarabine followed by infusion of JCAR014. Pts in group 1 receive the first infusion of durvalumab (225 mg, 750 mg, or 1500 mg) 21-28 days after treatment with JCAR014. Pts in group 2 receive the first dose of durvalumab (7.5 mg, 22.5 mg, 75 mg, 225 mg, 750 mg, or 1500 mg) 1 day prior to JCAR014 infusion. Up to 10 doses of durvalumab are administered after JCAR014 at the highest identified safe dose at 4-week intervals until toxicity or disease progression. We evaluated the safety, tolerability, and efficacy of the combination therapy and the pharmacokinetic profile of JCAR014 after infusion. Adverse events were graded using the Common Terminology Criteria for Adverse Events (CTCAE) v4.03, with the exception of cytokine release syndrome (CRS), which was graded according to consensus criteria (Lee, Blood 2014). Positron emission tomography/computed tomography was performed approximately 1, 2, 4, 6, 9, and 12 months after JCAR014 infusion and the best anti-tumor response was reported according to the Lugano criteria (Cheson, JCO 2014). Results Patient characteristics are shown in Table 1. Fifteen pts have been treated, including 6 in group 1 who received post-JCAR014 durvalumab doses of 225 mg (n = 3) and 750 mg (n = 3), and 9 in group 2 who received pre-JCAR014 durvalumab doses of 7.5 mg (n = 1), 22.5 mg (n = 1), 75 mg (n = 3), or 225 mg (n = 4). Durvalumab dose escalation is ongoing. JCAR014 manufacturing was successful for all pts. All pts received 2 x 106 JCAR014 CAR-T cells/kg, except the first 2 pts treated on the study who received 7 x 105 CAR-T cells/kg. Of the 13 pts who received JCAR014 at 2 x 106 CAR-T cells/kg, 5 pts (38%) developed CRS (2 grade 1, 2 grade 2, and 1 grade 4) and one (8%) developed grade 1 neurotoxicity. CRS and/or neurotoxicity occurred within 4 weeks of JCAR014 infusion, and were not observed when durvalumab was administered after JCAR014. With the exception of B cell aplasia, no autoimmune adverse events were observed. Twelve of 13 pts who received 2 x 106 CAR-T cells/kg were evaluable for response. One patient, who had grade 4 CRS and biopsy evidence of extensive CAR-T cell infiltration into persistent sites of disease, elected to receive hospice care and died on day 32 after JCAR014 infusion without full response evaluation. The overall response rate was 50% (5 CR, 42%; 1 PR, 8%). Of the 5 pts who achieved CR, 3 were in CR at the first restaging after JCAR014 and 2 subsequently converted to CR after the first post-JCAR014 durvalumab infusion. Only one patient who achieved CR has relapsed (median follow-up 10.6 months, range 3.7-11.8). Continued stable disease or evidence of regression was seen in 4 of 6 (67%) initially non-responding pts who continued durvalumab therapy (median 5 doses, range 1-6). CAR-T cell counts expanded in the peripheral blood within 14 days of JCAR014 infusion in all pts. Higher peak and day 28 CAR-T cell copy numbers in blood by qPCR were observed in responding pts. CAR-T cells were detected for a median of 5.1 months (range, 1.7 to 9.1 months) in responding pts. In vivo re-accumulation of CAR-T cells after the first post-JCAR014 durvalumab dose was observed in the blood of two patients in group 2. Conclusion The combination of JCAR014 with durvalumab for the treatment of adult pts with aggressive B-cell NHL appears safe; however, dose escalation is ongoing. Complete responses were observed both at initial restaging after JCAR014 infusion, and also subsequently in pts continuing durvalumab therapy after initially failing to achieve CR. Disclosures Hirayama: DAVA Oncology: Honoraria. Hay:DAVA Oncology: Honoraria. Till:Mustang Bio: Patents & Royalties, Research Funding. Kiem:Homology Medicine: Consultancy; Magenta: Consultancy; Rocket Pharmaceuticals: Consultancy. Shadman:Verastem: Consultancy; Beigene: Research Funding; Mustang Biopharma: Research Funding; Gilead Sciences: Research Funding; TG Therapeutics: Research Funding; AbbVie: Consultancy; Genentech: Research Funding; Pharmacyclics: Research Funding; Celgene: Research Funding; Qilu Puget Sound Biotherapeutics: Consultancy; Genentech: Consultancy; AstraZeneca: Consultancy; Acerta Pharma: Research Funding. Cassaday:Jazz Pharmaceuticals: Consultancy; Amgen: Consultancy, Research Funding; Merck: Research Funding; Seattle Genetics: Other: Spouse Employment, Research Funding; Pfizer: Consultancy, Research Funding; Adaptive Biotechnologies: Consultancy; Kite Pharma: Research Funding; Incyte: Research Funding. Acharya:Juno Therapeutics: Research Funding; Teva: Honoraria. Riddell:Cell Medica: Membership on an entity's Board of Directors or advisory committees; Juno Therapeutics: Equity Ownership, Patents & Royalties, Research Funding; Adaptive Biotechnologies: Consultancy; NOHLA: Consultancy. Maloney:Roche/Genentech: Honoraria; Juno Therapeutics: Research Funding; Janssen Scientific Affairs: Honoraria; GlaxoSmithKline: Research Funding; Seattle Genetics: Honoraria. Turtle:Precision Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Consultancy; Bluebird Bio: Consultancy; Gilead: Consultancy; Nektar Therapeutics: Consultancy, Research Funding; Eureka Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Juno Therapeutics / Celgene: Consultancy, Patents & Royalties, Research Funding; Caribou Biosciences: Consultancy; Aptevo: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 217-217 ◽  
Author(s):  
Shannon L Maude ◽  
David M. Barrett ◽  
Susan R. Rheingold ◽  
Richard Aplenc ◽  
David T Teachey ◽  
...  

Abstract Background Targeted immunotherapy with CTL019, CD19-specific chimeric antigen receptor (CAR)-modified T cells, can produce potent and sustained responses in children with relapsed/refractory acute lymphoblastic leukemia (ALL). However, a subset of patients has limited persistence, which can increase the risk of relapse. Most CAR single chain variable fragment (scFv) domains, including that of CTL019, are of murine origin; therefore, anti-mouse reactivity is one potential cause of immune-mediated rejection that may be overcome by fully human or humanized CAR designs. We developed a humanized anti-CD19 scFv domain and now report on treatment with humanized CD19-directed CAR T cells (CTL119). Design A pilot/phase 1 study of CAR-modified T cells containing a humanized anti-CD19 scFv domain (CTL119) enrolled children and young adults with relapsed/refractory B-ALL with or without prior exposure to a CAR T cell product. Patients previously treated with CD19-specific CAR-modified T cells were eligible if they met 1 of 3 criteria: 1) CD19+ relapse 2) no response to prior CAR T cell therapy or 3) early B cell recovery indicating poor persistence of CAR T cells. Patient-derived T cells were transduced ex vivo with a lentiviral vector encoding a CAR composed of CD3z, 4-1BB, and humanized anti-CD19 scFv domains and activated/expanded with anti-CD3/CD28 beads. The humanized scFv domain was developed by grafting the complementary determining regions of both the heavy and light chains onto human germline acceptor frameworks. Patients received lymphodepletion with cyclophosphamide and fludarabine 1 week prior to infusion with CTL119. Results Thirty children and young adults aged 29 mo-24 yr were infused with CTL119. Eighteen patients had received prior allogeneic stem cell transplant (SCT). Eleven patients who previously received murine-derived CD19-specific CAR-modified T cells (CTL019, n=7; other, n=4) were retreated for B cell recovery (n=5), CD19+ relapse (n=5), or no response to prior CAR T cells (n=1). CNS disease or other extramedullary disease was the indication for enrollment in 6 and 3 patients, respectively. At assessment 1 month after infusion, 26/30 patients (87%) achieved a complete response (CR), defined as morphologic remission with B cell aplasia. Of 11 patients previously treated with murine CD19-specific CAR-modified T cells, 7 (64%) achieved a CR at 1 month, 4 demonstrated no response. Multiparameter flow cytometry for minimal residual disease (MRD) was negative at a detection level of 0.01% in 5/7 responding patients. Two responding patients with positive MRD progressed to CD19+ relapse at 1.6 and 3 mo. In patients with no prior exposure to a CD19 CAR T cell product, MRD-negative CR was achieved in 19/19 patients (100%). One patient relapsed with CD19+ extramedullary disease at 2.8 mo. With a median follow-up of 4.2 mo (range, 1.0-14.1 mo) for all responding patients in both cohorts, 23/26 remain in remission with 1 proceeding to SCT in remission. B cell aplasia, a functional marker of CD19-targeted CAR T cell persistence, continued for 3 months or more in 11/18 patients with adequate follow-up: 1/6 retreatment, 10/12 CAR-naïve. Cytokine release syndrome (CRS) was observed in 28/30 patients and mild in most patients (grade 1, n=6; grade 2, n=18). Three patients experienced grade 3 CRS requiring supplemental oxygen or low-dose vasopressor support and 1 experienced grade 4 CRS requiring high-dose vasopressor and ventilatory support. Severe CRS was successfully managed with the IL6R antagonist tocilizumab in 3 patients. Neurologic toxicity included encephalopathy (n=5) and seizure (n=4) and was fully reversible. Conclusion In the first study of humanized anti-CD19 CAR T cells, CTL119 induced remissions in children and young adults with relapsed/refractory B-ALL, including 64% of patients previously treated with murine CD19-directed CAR T cells and 100% of CAR-naïve patients. Further investigation into CAR T cell persistence and anti-CAR responses will be vital to improve durable remission rates in this highly refractory population. Disclosures Maude: Novartis: Consultancy. Barrett:Novartis: Research Funding. Teachey:Novartis: Research Funding. Shaw:Novartis: Research Funding; Vitality Institute: Research Funding. Brogdon:Novartis: Employment. Scholler:Novartis: Patents & Royalties: Royalties, Research Funding. Marcucci:Novartis: Research Funding. Levine:GE Healthcare Bio-Sciences: Consultancy; Novartis: Patents & Royalties, Research Funding. Frey:Amgen: Consultancy; Novartis: Research Funding. Porter:Novartis: Patents & Royalties, Research Funding; Genentech: Employment. Lacey:Novartis: Research Funding. Melenhorst:Novartis: Research Funding. June:Novartis: Honoraria, Patents & Royalties, Research Funding; Celldex: Consultancy, Equity Ownership; Pfizer: Honoraria; Immune Design: Consultancy, Equity Ownership; Johnson & Johnson: Honoraria; Novartis: Honoraria, Patents & Royalties, Research Funding; Tmunity Therapeutics: Equity Ownership. Grupp:Pfizer: Consultancy; Jazz Pharmaceuticals: Consultancy; Novartis: Consultancy, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 678-678 ◽  
Author(s):  
Pei-Hsuan Chen ◽  
Mikel Lipschitz ◽  
Kyle Wright ◽  
Philippe Armand ◽  
Caron A. Jacobson ◽  
...  

Abstract BACKGROUND: Axicabtagene ciloleucel is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy that shows efficacy in patients with refractory diffuse large B-cell lymphoma (DLBCL), primary mediastinal B-cell lymphoma and transformed follicular lymphoma after failure of conventional therapy. However, the exact mechanism of anti-tumor immunity is poorly understood, in part due to the dearth of data on the events in the tumor micro-environment (TME) that occur upon exposure to CAR-T cells. We sought to quantify and characterize both CAR-T cells and non-CAR T cells within the TME of DLBCL using tissue biopsy samples collected in the ZUMA-1 multicenter trial of CAR-T cell therapy for patients with refractory DLBCL. METHODS: Tumor samples obtained from patients 5-30 days (median 10 days) after CAR-T infusion ("CAR-treated", n=14) and randomly-selected untreated ("untreated ", n=15) archival DLBCL tissue samples were analyzed by multiplex immunofluorescence using formalin-fixed, paraffin embedded tissue sections, with successive labeling by the primary antibodies KIP-1 and/or KIP-3 (recognizing separate CD19 CAR epitopes), PAX5, PD-1, CD4, and CD8, followed by secondary amplification and tyramide-conjugated fluorophores. For each case, at least 3 representative 20x fields of view were selected and imaged using a multispectral imaging platform. Two specific image analysis algorithms were designed to accurately identify CD4 and CD8 T cells and PAX5+ DLBCL cells simultaneously, then to threshold PD-1 and KIP-1/-3 by relative fluorescent units (RFU) in each phenotype. RESULTS: We identified CAR T-cells within the fixed biopsy samples of CAR-treated DLBCLs by immunostaining with CAR T-cell specific antibody KIP-1; at the timepoints analyzed, CAR T-cells comprised only a small minority of total T- cells (<2%) and included CD4+ and CD8+ T-cells. Immunostaining with a second antibody, KIP-3, validated the presence of CAR T-cells in these cases and confirmed the KIP-1 results. Expression of the T cell activation marker PD-1 was detected among majority of KIP-1+ cells. Further analysis that included KIP1-negative cells revealed that the percentage of CD8+ cells co-expressing PD-1 across all CD8+ cells was higher in the CAR-treated DLBCLs compared to the untreated DLBCLs (mean 50.1% vs 17.5%, p<0.0001 with unpaired t test ), indicating CD8 T cell activation within the tumor environment. In contrast, PD-1 positivity across CD4+ T cells were equivalent between the two groups (mean 21.8% vs 21.6%, ns with unpaired t test). The percentages of total, CD4+, and CD8+ T-cell populations in the TME were similar between the CAR-treated DLBCL and untreated biopsies. CONCLUSIONS: CD4+ and CD8+ CAR-T cells can be detected in CAR-treated DLBCL patient tissue biopsies by multiplex immunofluorescence. At the time points analyzed to date, CAR-T cells comprise only a small percentage of all T-cells (<2%) within the TME. However, the presence of gene marked T cells with downregulated CAR protein expression is also possible. The activation marker PD-1 is preferentially expressed by KIP-1-negative CD8+ T cells compared to CD4+ T cells in CAR-T treated DLBCLs relative to untreated DLBCLs. These data implicate preferential activation of CD8+ non-CAR "by-stander" T-cells in the post CAR-T TME, and the possible benefit of combining PD-1 blockade with CAR-T therapy in DLBCL. *PH.C and M.L share equal contribution. Disclosures Armand: Otsuka: Research Funding; Affimed: Consultancy, Research Funding; Pfizer: Consultancy; Infinity: Consultancy; Adaptive: Research Funding; Merck: Consultancy, Research Funding; Bristol-Myers Squibb: Consultancy, Research Funding; Roche: Research Funding; Tensha: Research Funding. Roberts:KITE: Employment. Rossi:KITE: Employment. Bot:KITE: Employment. Go:KITE: Employment. Rodig:Merck: Research Funding; Bristol Myers Squibb: Research Funding; Affimed: Research Funding; KITE: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4075-4075 ◽  
Author(s):  
Tanya Siddiqi ◽  
Xiuli Wang ◽  
Joycelynne Palmer ◽  
Leslie L. Popplewell ◽  
Liana Nikolaenko ◽  
...  

Background: Prognosis is generally poor for patients (pts) with primary or secondary central nervous system (CNS) lymphoma. We report data from such patients treated on the ongoing Phase 1 trial investigating an autologous CD19 specific, hinge-optimized, CD28 costimulatory chimeric antigen receptor with a truncated eGFR for the treatment of B-cell non-Hodgkin lymphomas (NHL) at City of Hope National Medical Center. Methods: Eligible pts had confirmed B-cell NHL with relapsed/refractory (r/r) disease and patients with CNS lymphoma (history of or active at the time of enrollment) could enroll. After lymphodepleting chemotherapy, CD19-targeting CAR-T cells were administered at 1 of 2 dose levels (DL): DL1 = 200 million (M) cells and DL2 = 600M cells. All patients received levetiracetam for seizure prophylaxis. Results: At the time of data lock (06/2019), three (3) patients with primary CNS lymphoma and four (4) with secondary CNS lymphoma had received CAR-T cells. Five (5) pts were treated at DL1 and two (2) were treated at DL2.The median (range) age was 53.0 (47.0-70.8) years and median (range) number of prior lines of systemic therapy was 6 (4-12). No pts had grade (G) 3 or higher cytokine release syndrome (CRS) or neurological toxicities (NT). Two (2) pts received corticosteroids and three (3) pts received tocilizumab for CAR-T cell associated grade 1-2 NT and CRS respectively. Other toxicities were predominantly cytopenias related to the lymphodepleting chemotherapy. There were no treatment-related deaths. 4 pts had an objective response: 1 complete remission and 3 partial remissions. Representative peripheral blood and cerebrospinal fluid samples are shown in the Figure. Conclusions: In this ongoing City of Hope CAR-T cell trial targeting CD19 in patients with r/r B-cell NHL, promising results were seen in patients with primary and secondary CNS lymphoma, a population of pts with a high unmet medical need. No grade 3 or higher CRS or NT were noted. Expansion phase enrollment continues currently and an intraventricular route of CAR-T cell delivery will also be evaluated for potentially improved antitumor effects. Clinical trial information: NCT02153580. Figure Disclosures Siddiqi: Janssen: Speakers Bureau; Seattle Genetics: Speakers Bureau; BeiGene: Research Funding; Celgene: Research Funding; TG Therapeutics: Research Funding; Kite: Research Funding; Astra Zeneca: Consultancy, Other: Travel, Accommodations, Expenses, Research Funding, Speakers Bureau; Juno: Consultancy, Research Funding; Pharmacyclics LLC, an AbbVie company: Consultancy, Research Funding, Speakers Bureau. Palmer:Gilead Sciences: Consultancy. Popplewell:City of Hope: Employment. Herrera:Adaptive Biotechnologies: Consultancy; Bristol-Myers Squibb: Consultancy, Research Funding; Gilead Sciences: Consultancy, Research Funding; Seattle Genetics: Consultancy, Research Funding; AstraZeneca: Research Funding; Merck: Consultancy, Research Funding; Genentech, Inc.: Consultancy, Research Funding; Pharmacyclics: Research Funding; Immune Design: Research Funding; Kite Pharma: Consultancy, Research Funding. Budde:F. Hoffmann-La Roche Ltd: Consultancy. OffLabel Disclosure: City of Hope CAR-T cells are not FDA approved.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 43-44
Author(s):  
Jae H. Park ◽  
Isabelle Riviere ◽  
Devanjan S. Sikder ◽  
Vladimir P. Bermudez ◽  
Brigitte Senechal ◽  
...  

Background: Autologous CAR T cell therapy targeting the B-cell specific surface antigen CD19 has demonstrated favorable clinical responses in relapsed or refractory (R/B) B-cell lymphomas (BCL). However, despite 40-60% initial complete response (CR) rates, only a subset of patients experience durable remissions, and there is a need to further improve the efficacy of CAR therapies by preventing relapse and attaining a deeper CR. We hypothesized that the redundancy of CD28 and CD3V signaling in a CAR design incorporating all 3 CD3Vimmunoreceptor tyrosine-based activation motifs (ITAMs) might foster counterproductive T cell differentiation and exhaustion, and therefore created a new CD19 CAR construct with calibrated CAR activation potential by mutating 2 of the 3 ITAMs, termed 1XX. In systemic ALL mouse models, 19-28z1XX CAR induced effective tumor eradication at low CAR T cell doses with improved survival compared to conventional 19-28z CAR. Further preclinical studies demonstrated that the enhanced therapeutic benefit resulted from the reduced strength of activation mediated by the 19-28z1XX CAR, achieving a favorable balance of effector and memory functions, thereby enhancing persistence of functional CAR T cells and promoting effective elimination of CD19+ leukemia at lower T cell doses than needed with 19-28z CAR T cells (Feucht J et al. Nat Med 2019). To further improve the persistence of functional CAR T cells, we screened different humanized CD19-directed scFv in the context of a 19-28z1XX CAR design and proved high specificity and functionality of 19-28z1XX CARs containing a novel humanized scFv T2 - termed 19(T2)28z1XX. Study Design and Methods: This study is a single center Phase I clinical trial of 19(T2)28z1XX in patients with R/R B-cell malignancies at Memorial Sloan Kettering Cancer Center (NCT04464200). Key disease eligibility criteria include R/R diffuse large B cell lymphoma (DLBCL), high grade BCL, primary mediastinal BCL, indolent BCL and chronic lymphocytic leukemia (CLL). Patients with prior CD19 CAR therapies are eligible as long as expression of CD19 is confirmed. Key exclusion criteria include ongoing immunosuppression such as systemic GvHD therapy and active CNS disease. The study uses a 3+3 dose-escalation design to identify the maximum tolerated dose for BCL. There are 5 planned flat-dose levels. Patients will receive conditioning chemotherapy consisting of 3 days of fludarabine and cyclophosphamide followed by a single infusion of 19(T2)28z1XX CAR T cells. In the dose-escalation phase, patients with DLBCL, high grade BCL, and primary mediastinal BCL are eligible to participate. Once the recommended phase 2 dose (RP2D) is determined, the study will open to dose expansion phase with two cohorts. Cohort 1 includes DLBCL, high grade BCL and primary mediastinal BCL (i.e. same eligibility criteria as the dose-escalation phase). Cohort 2 will include patients with indolent BCL, CLL, and Richter's transformation. The dose-expansion part of the trial is designed to further characterize the safety, efficacy, and pharmacokinetics of 19(T2)28z1XX CAR in multiple indications. The primary objective of the trial is to evaluate safety and tolerability and determine the recommended Phase 2 dose of 19(T2)28z1XX. Key secondary objectives include evaluation of 19(T2)28z1XX's efficacy and cellular kinetics. Exploratory objectives include assessment of B cell aplasia, and analysis of serum cytokines. The trial has begun enrollment in August 2020. The investigators are hopeful this study will lead to development of improved CD19 CAR T cell therapy with enhanced efficacy and favorable toxicity profiles with lower infused T cell dose. Disclosures Park: AstraZeneca: Consultancy; Servier: Consultancy, Research Funding; Autolus: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Novartis: Consultancy; Minverva: Consultancy; Artiva: Membership on an entity's Board of Directors or advisory committees; Fate Therapeutics: Research Funding; Kite: Consultancy, Research Funding; Incyte: Consultancy, Research Funding; Genentech/Roche: Research Funding; Juno Therapeutics: Research Funding; GSK: Consultancy; Intellia: Consultancy; Allogene: Consultancy. Riviere:Fate Therapeutics Inc.: Consultancy, Other: Ownership interest , Research Funding; FloDesign Sonics: Consultancy, Other: Ownership interest; Juno Therapeutics: Other: Ownership interest, Research Funding; Takeda: Research Funding; Atara: Research Funding. Palomba:Genentech: Research Funding; Juno Therapeutics, a Bristol-Meyers Squibb Company: Honoraria, Research Funding; Regeneron: Research Funding; Novartis: Honoraria; Merck: Honoraria; Celgene: Honoraria; Pharmacyclics: Honoraria. Brentjens:BMS: Research Funding; Gracell Therapeutics: Consultancy; Juno Therapeutics (a Bristol Myers Squibb company): Patents & Royalties. Sadelain:Atara: Patents & Royalties, Research Funding; Fate Therapeutics: Patents & Royalties, Research Funding; Minerva: Other: Biotechnologies , Patents & Royalties; Mnemo: Patents & Royalties; Takeda: Patents & Royalties, Research Funding. OffLabel Disclosure: Cyclophosphamide and fludarabine will be used as conditioning therapy prior to 19(T2)28z1XX CAR T cell administration.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4192-4192 ◽  
Author(s):  
Jeremy S. Abramson ◽  
Lia Palomba ◽  
Leo I Gordon ◽  
Matthew Lunning ◽  
Jon Arnason ◽  
...  

Abstract Background: Based on promising results seen in patients treated with CD19-directed CAR-T cells in relapsed or refractory (R/R) pediatric B-cell acute lymphoblastic leukemia (Gardner, ASCO 2016) and adult B-cell non-Hodgkin lymphoma (Turtle, ASCO 2016), we are conducting a multicenter phase 1 trial of JCAR017 in R/R diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) (ClinicalTrials.gov Identifier: NCT02631044). JCAR017 is a second-generation, CD19-directed CAR-T cell product of defined cellular composition consisting of a 1:1 ratio of CD8+:CD4+ CAR+ T cells. Methods: Patients with R/R DLBCL (de novo or transformed from indolent lymphoma), follicular lymphoma grade 3B, or MCL and adequate organ function are eligible. There was no minimum absolute lymphocyte count (ALC) requirement for apheresis and no test expansion required. Treatment includes lymphodepletion (fludarabine 30 mg/m2 and cyclophosphamide 300 mg/m2 daily for 3 days) and JCAR017 given 2-7 days post-lymphodepletion at a starting dose of 5 x 107 CAR+ T cells (DL1). Single-dose and two-dose schedules are being evaluated. Primary objectives include safety and pharmacokinetics (PK) of JCAR017 measured by flow cytometry and quantitative PCR. Secondary objectives include complete and overall response (CR, OR) rates and duration of response (DOR). Response is assessed using the Lugano (2014) criteria. Results: As of August 1, 2016, 39 patients have been enrolled and 28 patients apheresed. Fourteen patients have been treated, all at DL1. Eight were male and 6 female. Thirteen patients had DLBCL and 1 had MCL. Median age was 61 years (range 37-79) and median number of prior therapies was 5 (range 2-9). Ten patients had undergone prior transplant (7 autologous; 3 allogeneic). Of the 14 patients, there were no cases of severe cytokine release syndrome (sCRS); 3 patients had low grade CRS (21%) (2 grade 1; 1 grade 2) and none required treatment with tocilizumab. Two of the 14 treated patients (14%) had neurotoxicity: 1 grade 4 encephalopathy and 1 grade 4 seizure. Both were in patients with DLBCL and were dose-limiting toxicities. Two deaths were seen in the DLBCL group and were due to disease progression. Twelve patients had at least 1 post-treatment response assessment; 11 patients with DLBCL and 1 with MCL. The patient with MCL had progressive disease at day 29 (D29). In the DLBCL group, response rates were: 82% (9/11) OR, 73% (8/11) CR, 9% (1/11) PR and 18% (2/11) PD at the time of post-treatment assessment on D29. All but one patient who achieved a CR were in remission at the time of this data cut. One DLBCL patient in CR had a parenchymal brain lesion in the right temporal lobe that also completely resolved. Of note, this patient had no CRS or neurotoxicity associated with JCAR017 treatment. The PK profile of JCAR017 in the peripheral blood and bone marrow show cellular expansion in all patients with persistence out to at least 3 months in patients with adequate follow up. Exploratory biomarker analyses will be presented at the meeting along with updated clinical data. Conclusions: Treatment with the defined cellular composition product JCAR017 following lymphodepletion with fludarabine and cyclophosphamide results in high CR rates in patients with heavily pretreated DLBCL, including the first report of a CR in a patient with secondary CNS lymphoma. Observed toxicities are manageable and compare favorably to other reported CAR T-cell products. Disclosures Abramson: Gilead: Consultancy; Kite Pharma: Consultancy; Abbvie: Consultancy; Seattle Genetics: Consultancy. Gordon:Northwestern University: Patents & Royalties: Patent for gold nanoparticles pending. Lunning:Celgene: Consultancy; Bristol-Myer-Squibb: Consultancy; Pharmacyclics: Consultancy; Genentech: Consultancy; Juno: Consultancy; AbbVie: Consultancy; Gilead: Consultancy; TG Therapeutics: Consultancy; Spectrum: Consultancy. Arnason:Gilead: Consultancy. Forero-Torres:Genentech/Roche: Research Funding; Seattle Genetics: Research Funding; Juno: Research Funding; Incyte: Research Funding; Abbvie: Research Funding; Novartis: Research Funding; Pfizer: Research Funding. Albertson:Juno Therapeutics: Employment, Equity Ownership. Sutherland:Juno therapeutics: Employment. Xie:Juno Therapeutics: Employment, Equity Ownership. Snodgrass:Juno therapeutics: Employment. Siddiqi:Pharmacyclics, LLC, an AbbVie Company: Speakers Bureau; Janssen: Speakers Bureau; Seattle Genetics: Speakers Bureau; Kite pharma: Other: Funded travel, 1 day registration, and 1 night hotel stay for EHA2016 so I could present trial data there.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 3-4
Author(s):  
Julio C. Chavez ◽  
Frederick L. Locke ◽  
Ellen Napier ◽  
Carl Simon ◽  
Andrew Lewandowski ◽  
...  

Background: Tisagenlecleucel (tisa-cel), an autologous anti-CD19 chimeric antigen receptor (CAR)-T cell therapy, has demonstrated durable responses and a manageable safety profile in adult patients (pts) with relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL). It has previously been suggested that prior therapy with ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, may improve tisa-cel manufacturing, in vivo cellular kinetics, and antitumor efficacy (Fraietta et al. Blood. 2016). Moreover, since BTK signaling is involved in direct pro-inflammatory polarization of macrophages, as well as indirectly by T cells, it is hypothesized that ibrutinib may mitigate CAR-T cell-related toxicities such as cytokine release syndrome (CRS) and neurological events (NE). We report the initial results from a Phase Ib, multicenter, open-label trial evaluating the safety and tolerability of tisa-cel in combination with ibrutinib in adult pts with r/r DLBCL. Methods: Adult pts with r/r DLBCL who received &gt;2 prior lines of systemic therapy, including pts who progressed after or were ineligible for autologous stem cell transplant, were enrolled. The study design has 2 nonrandomized arms. In Arm 1, pts received ibrutinib 560 mg/d for ~4 weeks prior to leukapheresis; in Arm 2, pts were exposed to ibrutinib after leukapheresis. In both arms, ibrutinib was continued throughout lymphodepleting chemotherapy, tisa-cel infusion, and post infusion for up to 24 months. Lymphodepleting chemotherapy, ending at least 2 days before tisa-cel infusion, was either fludarabine (25 mg/m2) and cyclophosphamide (250 mg/m2) daily for 3 days or bendamustine (90 mg/m2) daily for 2 days. Pts received a single infusion of tisa-cel (target dose: 0.6-6.0×108 viable CAR+ T cells). Primary endpoints are incidence and severity of adverse events and ibrutinib dose interruptions/modifications. Secondary endpoints include best overall response (BOR) by Lugano criteria and cellular kinetics of tisa-cel. Results: As of June 9, 2020, 10 pts have been treated and observed through at least the Day 28 assessment: 4 in Arm 1 and 6 in Arm 2. Median age was 59 (range, 32-67) in Arm 1 and 64 (range, 58-76) in Arm 2. Median number of prior therapies was 3.5 (range, 2-5) in Arm 1 and 2 (range, 2-3) in Arm 2. Three of 10 pts (Arm 1, n=1; Arm 2, n=2) had an activated B-cell-like subtype of DLBCL. Six of 10 pts (Arm 1, n=1; Arm 2, n=5) had grade 1 CRS (by Lee scale) and 1 pt had NE (Arm 2, grade 1 by ASTCT criteria; Table). One pt in Arm 2 had grade 3 neutropenia lasting &gt;28 days post tisa-cel infusion. No other pts had grade 3 or 4 neutropenia or thrombocytopenia lasting &gt;28 days. No major bleeding events were observed. Ibrutinib-related bradycardia and atrial fibrillation (both grade 2) were each observed in 1 pt in Arm 1; supraventricular tachycardia (grade 1) related to tisa-cel was observed in 1 pt in Arm 2. No pt required tocilizumab or ICU admission. As of data cutoff, BOR in Arm 1 was complete response (CR) in 2 pts and partial response (PR) in 2 pts, with no relapses. BOR in Arm 2 was CR in 2 pts, PR in 1 pt, and progressive disease in 3 pts (Table). CAR-T cell expansion in vivo by qPCR was in line with data from the pivotal JULIET trial, except for 1 pt in Arm 2 whose transgene levels were below the limit of quantification at all points in time and who progressed at Day 28. Median viability of the leukapheresis material was 96.80% (range, 88.8-97.3) in Arm 1 and 90.95% (range, 88.1-94.7) in Arm 2. A naïve/stem cell-like central memory phenotype (CD45RA+/CCR7+) was observed in 24.05% (median; range, 15.9-37.0) of CD8+ T cells in the leukapheresis material for Arm 1 and in 8.12% (median; range, 1.3-20.4) for Arm 2 (Fig.1A). Fig.1B shows total CAR+ manufactured cells in each arm. The median dose of the final product was 3.9×108 CAR+ T cells in Arm 1 (range, 3.4-4.6×108 CAR+ T cells; median viability 92.25%) and 1.7×108 CAR+ T cells in Arm 2 (range, 1.2-3.0×108 CAR+ T cells; median viability 85.8%; Fig.1C). IFNγ secretion of tisa-cel in vitro in response to CD19+ target cells was similar between the 2 arms, whereas median normalized IL-2 responses were 23.1 fg/CAR+ cell in Arm 1 (range, 16.7-43.8) and 1.1 fg/CAR+ cell in Arm 2 (range, 0-17.3). Conclusions: These results support the feasibility of administering ibrutinib to pts with DLBCL throughout tisa-cel therapy. When given before apheresis, ibrutinib may improve CAR-T cell manufacturing, although further studies are needed to confirm this finding. Disclosures Chavez: AstraZeneca: Speakers Bureau; Morphosys: Consultancy, Speakers Bureau; Merck: Research Funding; Bayer: Consultancy; BeiGene: Speakers Bureau; Karyopharm: Consultancy; Genentech: Speakers Bureau; AbbVie: Consultancy; Epizyme: Speakers Bureau; Gilead: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Kite, a Gilead Company: Consultancy, Speakers Bureau; Verastem: Consultancy; Pfizer: Consultancy. Locke:Kite, a Gilead Company: Consultancy, Research Funding; Calibr: Consultancy; Celgene/Bristol-Myers Squibb: Consultancy; Novartis: Consultancy; GammaDelta Therapeutics: Consultancy; Cellular Biomedicine Group: Other: Consultancy with grant options; Allogene: Consultancy; Wugen: Consultancy. Simon:Novartis: Current Employment. Lewandowski:Novartis Institutes for BioMedical Research: Current Employment. Awasthi:Novartis Institutes for BioMedical Research: Current Employment. Engels:Novartis Institutes for BioMedical Research: Current Employment. Georgala:Novartis Pharmaceuticals Corporation: Current Employment. Bondanza:Novartis Institutes for BioMedical Research: Current Employment. Schuster:AlloGene, AstraZeneca, BeiGene, Genentech, Inc./ F. Hoffmann-La Roche, Juno/Celgene, Loxo Oncology, Nordic Nanovector, Novartis, Tessa Therapeutics: Consultancy, Honoraria; Novartis, Genentech, Inc./ F. Hoffmann-La Roche: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document