scholarly journals The Ribonucleotide Reductase Inhibitor, Didox, Reduces the In Vivo Vascular Inflammation and Oxidative Stress Induced By Acute Hemolysis

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1034-1034
Author(s):  
Nicola Conran ◽  
Juliete A.F. Silva ◽  
Erica M.F. Gotardo ◽  
Hanan Chweih ◽  
Lediana I. Miguel ◽  
...  

Abstract Introduction: Several diseases and disorders, including hereditary and acquired hemolytic anemia, blood transfusion reactions, preeclampsia and some infections, incur intravascular hemolysis to varying degrees. The destruction of red blood cells and the release of hemoglobin (Hb) and heme into the circulation results in vascular inflammation, characterized by the recruitment of leukocytes to the vascular endothelium, reduced nitric oxide bioavailability and oxidative stress, all of which may contribute to complications seen in hemolytic diseases, such as pulmonary hypertension, cutaneous leg ulcers and priapism. Didox (3,4-dihydroxybenzohydroxamic acid), a ribonucleotide reductase inhibitor, has been shown to have anti-inflammatory and anti-oxidative effects. This molecule has potential as a cancer therapy and has demonstrated beneficial effects in numerous pathologies, diminishing vaso-occlusive processes in mice with sickle cell disease, and suppressing mast cell activation and degranulation, amongst other effects. Aims: The aim of this study was to evaluate the effects of didox on the vascular inflammatory effects of in vivo acute hemolysis. Methods: C57BL/6 mice received i.v. didox (10 mg/animal) or the same volume of saline vehicle immediately before receiving the hemolytic stimulus. In some mice, didox (10 mg) was given intraperitonally (i.p.) 30 min before hemolysis. Acute hemolysis (HEM) was induced by injecting mice (i.v.) with 100 µl sterile water; for non-hemolysis controls (CON), the same quantity of saline was administered i.v.. At 15 min post-hemolysis, blood was obtained by cardiac puncture for biochemical and flow cytometry analyses; other animals were submitted to cremaster muscle exposure followed by intravital microscopy. Results: Intravascular H2O administration successfully induced hemolysis within 15 min, as demonstrated by elevated plasma cell-free Hb and heme levels (plasma Hb: 0.20±0.05 and 0.66±0.16 mg/ml, P<0.01; total plasma heme: 26.3±4.9 and 87.1±18.4 µM, for CON and HEM, respectively, N=≥6, P<0.001). Interestingly, pre-administration of mice with didox slightly, but significantly, decreased plasma Hb and Heme (plasma Hb: 0.43±0.07 and 0.54±0.07 mg/ml, P<0.05; total plasma heme: 62.7.3±9.5 and 71.5±6.7 µM for i.v. and i.p. didox, respectively, N=6, P<0.05). Concomitantly, acute hemolysis significantly augmented leukocyte (WBC) recruitment and extravasation in the cremaster microcirculation (WBC adhesion: 3.07±0.28 and 13.41±1.02 WBC µm-1, P<0.001; WBC extravasation: 0.72±0.16 and 2.93±0.45 WBC (100x50 µm-2) for CON and HEM, respectively, N=≥5, P<0.001). Didox significantly abrogated this effect of hemolysis, decreasing WBC adhesion to 6.12±0.62 and 2.10±0.30 WBC µm-1 and WBC extravasation to 1.32±0.24 and 1.14±0.21 WBC (100x50 µm-2) (for i.v. and i.p. didox, respectively, N≥5, P<0.001). Flow cytometry demonstrated that hemolysis elevated both the generation of reactive oxygen species (ROS) in the granulocytes of mice and their expression of the Mac-1 integrin subunit, CD11b (ROS: 590±58 and 1140±187 MFI, P<0.01; CD11b: 3028±387 and 4534±416 MFI, for CON and HEM, respect. N=3-6, P<0.01). Importantly, the inhibition of vascular inflammation by didox was associated with a significant decrease in both ROS generation and CD11b expression by granulocytes (ROS: 591±53 and 699±120 MFI, P<0.01; CD11b 2399±126 and 2379±207 MFI, for i.v. and i.p. didox, respectively. N=3-6, P<0.01). Conclusion: Didox, when administrated both intravascularly and intraperitoneally in mice, can inhibit the significant elevations in leukocyte integrin expression and cellular recruitment in the microcirculation that are induced by acute hemolysis. This improvement in vascular inflammation is accompanied by the prevention of oxidative stress in the leukocytes. While didox was found to slightly reduce hemolysis in response to osmotic shock, an interesting observation in itself, it is probable that the beneficial effects of this molecule on vascular inflammation are mediated largely by its effect on oxidative stress parameters. As such, this molecule may provide a novel therapeutic approach to reduce the oxidative stress and vascular inflammation caused by hemolytic events. This includes potential clinical use to treat sickle cell disease and other disorders in which hemolysis is a contributing factor to the pathophysiology. Disclosures Elford: Molecules for Health, Inc.: Equity Ownership, Patents & Royalties: Didox.

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ting Zhai ◽  
Wei Xu ◽  
Yayun Liu ◽  
Kun Qian ◽  
Yanling Xiong ◽  
...  

Background. Honokiol (HNK) has been reported to possess various beneficial effects in the context of metabolic disorders, including fatty liver, insulin resistance, and oxidative stress which are closely related to nonalcoholic steatohepatitis (NASH), however with no particular reference to CFLAR or JNK. Methods. C57BL/6 mice were fed methionine-choline-deficient (MCD) diet and administered simultaneously with HNK (10 and 20 mg/kg once a day, ig) for 6 weeks, and NCTC1469 cells were pretreated, respectively, by oleic acid (OA, 0.5 mmol/L) plus palmitic acid (PA, 0.25 mmol/L) for 24 h, and adenovirus-down Cflar for 24 h, then exposed to HNK (10 and 20 μmol/L) for 24 h. Commercial kits, H&E, MT, ORO staining, RT-qPCR, and Western blotting were used to detect the biomarkers, hepatic histological changes, and the expression of key genes involved in NASH. Results. The in vivo results showed that HNK suppressed the phosphorylation of JNK (pJNK) by activating CFLAR; enhanced the mRNA expression of lipid metabolism-related genes Acox, Cpt1α, Fabp5, Gpat, Mttp, Pparα, and Scd-1; and decreased the levels of hepatic TG, TC, and MDA, as well as the levels of serum ALT and AST. Additionally, HNK enhanced the protein expression of oxidative stress-related key regulatory gene NRF2 and the activities of antioxidases HO-1, CAT, and GSH-Px and decreased the protein levels of prooxidases CYP4A and CYP2E1. The in vivo effects of HNK on the expression of CLFAR, pJNK, and NRF2 were proved by the in vitro experiments. Moreover, HNK promoted the phosphorylation of IRS1 (pIRS1) in both tested cells and increased the uptake of fluorescent glucose 2-NBDG in OA- and PA-pretreated cells. Conclusions. HNK ameliorated NASH mainly by activating the CFLAR-JNK pathway, which not only alleviated fat deposition by promoting the efflux and β-oxidation of fatty acids in the liver but also attenuated hepatic oxidative damage and insulin resistance by upregulating the expression of NRF2 and pIRS1.


2006 ◽  
Vol 12 (9) ◽  
pp. 2912-2918 ◽  
Author(s):  
Christopher A. Barker ◽  
William E. Burgan ◽  
Donna J. Carter ◽  
David Cerna ◽  
David Gius ◽  
...  

2021 ◽  
Author(s):  
Jingsi Zhang ◽  
Yuanshu Hui ◽  
Fengyi Liu ◽  
Qian Yang ◽  
Yi Lu ◽  
...  

Abstract Background: Currently, vascular endothelial damage caused by hypertension is one of the major health challenges facing countries around the world. Neohesperidin has been shown to play an important role in tumorigenesis and tumorigenesis, cardiac hypertrophy and remodeling, and oxidative stress. However, whether Nehesperidin plays an important role in endothelial injury induced by hypertension has not been clarified.Results: In this study, Angiotensin II was used to induce hypertension in mice. Blood pressure and vasoconstrictor function were measured, vascular thickness and fibrosis were detected by H&E and Masson tricolor staining, vascular inflammation was detected by immunofluorescence, oxidative stress was detected by DHE staining, and markers such as fibrosis, hypertrophy and oxidative stress were detected by qPCR. At the same time, we observed the effect of Nehesperidin on Ang II-induced HUVECs. The results showed that neohesperidin can significantly inhibit Ang II-induced hypertension, vascular thickness, fibrosis, oxidative stress and inflammation in vivo and in vitro. Conclusions: The results suggested that Nehesperidin could act as an antioxidant to significantly inhibit Ang II-induced hypertension and endothelial injury in HUVECs in mice by inhibiting oxidative stress response.


2021 ◽  
Vol 186 ◽  
pp. 114490
Author(s):  
Karuppusamy Arunachalam ◽  
Amilcar Sabino Damazo ◽  
Antonio Macho ◽  
Monica Steffi Matchado ◽  
Eduarda Pavan ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1175
Author(s):  
Johanna Helmstädter ◽  
Karin Keppeler ◽  
Franziska Aust ◽  
Leonie Küster ◽  
Katie Frenis ◽  
...  

Sepsis causes high mortality in the setting of septic shock. LEADER and other trials revealed cardioprotective and anti-inflammatory properties of glucagon-like peptide-1 (GLP-1) analogs like liraglutide (Lira). We previously demonstrated improved survival in lipopolysaccharide (LPS)-induced endotoxemia by inhibition of GLP-1 degradation. Here we investigate the effects of Lira in the polymicrobial sepsis model of cecal ligation and puncture (CLP). C57BL/6J mice were intraperitoneally injected with Lira (200 µg/kg/d; 3 days) and sepsis induced by CLP after one day of GLP-1 analog treatment. Survival and body temperature were monitored. Aortic vascular function (isometric tension recording), protein expression (immunohistochemistry and dot blot) and gene expression (qRT-PCR) were determined. Endothelium-dependent relaxation in the aorta was impaired by CLP and correlated with markers of inflammation (e.g., interleukin 6 and inducible nitric oxide synthase) and oxidative stress (e.g., 3-nitrotyrosine) was higher in septic mice, all of which was almost completely normalized by Lira therapy. We demonstrate that the GLP-1 analog Lira ameliorates sepsis-induced endothelial dysfunction by the reduction of vascular inflammation and oxidative stress. Accordingly, the findings suggest that the antioxidant and anti-inflammatory effects of GLP-1 analogs may be a valuable tool to protect the cardiovascular system from dysbalanced inflammation in polymicrobial sepsis.


2021 ◽  
Vol 96 ◽  
pp. 107593
Author(s):  
Yiming Ma ◽  
Lijuan Luo ◽  
Xiangming Liu ◽  
Herui Li ◽  
Zihang Zeng ◽  
...  

2019 ◽  
Vol 33 (1) ◽  
pp. 294-301
Author(s):  
Dessislava Lazarova ◽  
Sayaka Shibata ◽  
Itsuko Ishii ◽  
Genoveva Zlateva ◽  
Zhivko Zhelev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document