scholarly journals Imaging of redox-imbalance and oxidative stress in kidney in vivo, induced by dietary cholesterol

2019 ◽  
Vol 33 (1) ◽  
pp. 294-301
Author(s):  
Dessislava Lazarova ◽  
Sayaka Shibata ◽  
Itsuko Ishii ◽  
Genoveva Zlateva ◽  
Zhivko Zhelev ◽  
...  
2021 ◽  
Vol 186 ◽  
pp. 114490
Author(s):  
Karuppusamy Arunachalam ◽  
Amilcar Sabino Damazo ◽  
Antonio Macho ◽  
Monica Steffi Matchado ◽  
Eduarda Pavan ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


2021 ◽  
Vol 96 ◽  
pp. 107593
Author(s):  
Yiming Ma ◽  
Lijuan Luo ◽  
Xiangming Liu ◽  
Herui Li ◽  
Zihang Zeng ◽  
...  

2011 ◽  
Vol 74 (1) ◽  
pp. 150-156 ◽  
Author(s):  
Rizwan A. Ansari ◽  
Shakilur Rahman ◽  
Manpreet Kaur ◽  
Sameya Anjum ◽  
Sheikh Raisuddin

2021 ◽  
pp. 1-11
Author(s):  
Hanqing Chen ◽  
Xiru Xu ◽  
Zhengqing Liu ◽  
Yong Wu

Hypertension is considered a risk factor for a series of systematic diseases. Known factors including genetic predisposition, age, and diet habits are strongly associated with the initiation of hypertension. The current study aimed to investigate the role of miR-22-3p in hypertension. In this study, we discovered that the miR-22-3p level was significantly decreased in the thoracic aortic vascular tissues and aortic smooth muscle cells (ASMCs) of spontaneously hypertensive rats. Functionally, the overexpression of miR-22-3p facilitated the switch of ASMCs from the synthetic to contractile phenotype. To investigate the underlying mechanism, we predicted 11 potential target mRNAs for miR-22-3p. After screening, chromodomain helicase DNA-binding 9 (CHD9) was validated to bind with miR-22-3p. Rescue assays showed that the co-overexpression of miR-22-3p and CHD9 reversed the inhibitory effect of miR-22-3p mimics on cell proliferation, migration, and oxidative stress in ASMCs. Finally, miR-22-3p suppressed vascular remodeling and oxidative stress in vivo. Overall, miR-22-3p regulated ASMC phenotype switch by targeting CHD9. This new discovery provides a potential insight into hypertension treatment.


Author(s):  
Shreya Mandal ◽  
Arpita Patra ◽  
Shrabani Pradhan ◽  
Suchismita Roy ◽  
Animesh Samanta ◽  
...  

Objective: The aim of this study was to evaluate the antioxidant property of the isolated phytocompounds from TA (Terminalia arjuna) bark and in vivo study for nephro-protective and oxidative stress reducing activity in experimentally induced albino male rats.Methods: Fractions from methanol crude TA extract were collected by column chromatography and F27, F28, F29 fractions were selected on the basis of antioxidant property by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay. The in vivo study performed by 30 albino male rats which were randomly divided into five groups: Group I (control)were taken normal food and water, Groups II (uremic) were injected acetaminophen intraperitoneally at the dose of 500 mg/kg/d for 10 d, Group III, IV and V(extract treatment) acetaminophen intraperitoneally at the dose of 500 mg/kg/d for 10 d with co-administered orally of methanol fraction F27, F28, F29 at the dose of 100 mg/kg/d for 15 d respectively.Results: After scarification of rats, the uremic marker plasma urea (80%), creatinine (85%) were elevated and antioxidant enzyme marker such as plasma SOD and catalase level were significantly increased (p<0.05)in Group IV compared to Group II. The total phenolic content of the F28 methanolic fraction was (815.48±8.11) mg gallic acid equivalent/g of extract. For isolation of available compound by 1H NMR study in F28 methanol fraction of TA bark was arjunoside IV which contained olefinic proton (a pair of carbon atom linked with double bond).Conclusion: Among the three methanolic fraction of TA bark, F28 was shown best antioxidative, nephron-protective and oxidative stress reducing property. 


2021 ◽  
Vol 22 (19) ◽  
pp. 10822
Author(s):  
Agata Winiarska ◽  
Monika Knysak ◽  
Katarzyna Nabrdalik ◽  
Janusz Gumprecht ◽  
Tomasz Stompór

The incidence of type 2 diabetes (T2D) has been increasing worldwide, and diabetic kidney disease (DKD) remains one of the leading long-term complications of T2D. Several lines of evidence indicate that glucose-lowering agents prevent the onset and progression of DKD in its early stages but are of limited efficacy in later stages of DKD. However, sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor (GLP-1R) antagonists were shown to exert nephroprotective effects in patients with established DKD, i.e., those who had a reduced glomerular filtration rate. These effects cannot be solely attributed to the improved metabolic control of diabetes. In our review, we attempted to discuss the interactions of both groups of agents with inflammation and oxidative stress—the key pathways contributing to organ damage in the course of diabetes. SGLT2i and GLP-1R antagonists attenuate inflammation and oxidative stress in experimental in vitro and in vivo models of DKD in several ways. In addition, we have described experiments showing the same protective mechanisms as found in DKD in non-diabetic kidney injury models as well as in some tissues and organs other than the kidney. The interaction between both drug groups, inflammation and oxidative stress appears to have a universal mechanism of organ protection in diabetes and other diseases.


Sign in / Sign up

Export Citation Format

Share Document