macromolecular damage
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Raghbendra Kumar Dutta ◽  
Joon No Lee ◽  
Yunash Maharjan ◽  
Channy Park ◽  
Seong-Kyu Choe ◽  
...  

Abstract Background: Lysosomes are a central hub for cellular metabolism and are involved in the regulation of cell homeostasis through the degradation or recycling of unwanted or dysfunctional organelles through the autophagy pathway. Catalase, a peroxisomal enzyme, plays an important role in cellular antioxidant defense by decomposing hydrogen peroxide into water and oxygen. In accordance with pleiotropic significance, both impaired lysosomes and catalase have been linked to many age-related pathologies with a decline in lifespan. Aging is characterized by progressive accumulation of macromolecular damage and the production of high levels of reactive oxygen species (ROS). Although lysosomes degrade the most long-lived proteins and organelles via the autophagic pathway, the role of lysosomes and their effect on peroxisomes during aging is not known. The present study investigated the role of catalase and lysosomal function in catalase-knockout (KO) mice.Results: We found that catalase-deficient mice exhibited an aging phenotype faster than wild-type (WT) mice. We also found that aged catalase-KO mice induced leaky lysosomes by progressive accumulation of lysosomal contents, such as cathespin D, into the cytosol. Leaky lysosomes inhibited autophagosome formation and triggered impaired autophagy. The dysregulation of autophagy triggered mTORC1 (mechanistic target of rapamycin complex 1) activation, which plays a pivotal role in modulating aging. However, the antioxidant N-acetyl-L-cysteine (NAC) and mTORC1 inhibitor rapamycin rescued leaky lysosomes and aging phenotypes in catalase-deficient aged mice.Conclusion: This study unveils the new role of catalase and its role in lysosomal function during aging.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3020
Author(s):  
Bruno M. Guerreiro ◽  
Jorge Carvalho Silva ◽  
João Carlos Lima ◽  
Maria A. M. Reis ◽  
Filomena Freitas

Reactive oxygen species (ROS) are dangerous sources of macromolecular damage. While most derive from mitochondrial oxidative phosphorylation, their production can be triggered by exogenous stresses, surpassing the extinction capacity of intrinsic antioxidant defense systems of cells. Here, we report the antioxidant activity of FucoPol, a fucose-rich polyanionic polysaccharide produced by Enterobacter A47, containing ca. 17 wt% of negatively charged residues in its structure. Ferric reducing antioxidant power (FRAP) assays coupled to Hill binding kinetics fitting have shown FucoPol can neutralize ferricyanide and Fe3+-TPTZ species at an EC50 of 896 and 602 µg/mL, respectively, with positive binding cooperativity (2.52 ≤ H ≤ 4.85). This reducing power is greater than most polysaccharides reported. Moreover, an optimal 0.25% w/v FucoPol concentration shown previously to be cryo- and photoprotective was also demonstrated to protect Vero cells against H2O2-induced acute exposure not only by attenuating metabolic viability decay, but also by accentuating post-stress proliferation capacity, whilst preserving cell morphology. These results on antioxidant activity provide evidence for the biopolymer’s ability to prevent positive feedback cascades of the radical-producing Fenton reaction. Ultimately, FucoPol provides a biotechnological alternative for implementation in cryopreservation, food supplementation, and photoprotective sunscreen formula design, as all fields benefit from an antioxidant functionality.


2021 ◽  
Vol 22 (17) ◽  
pp. 9477
Author(s):  
Ralph A. Pietrofesa ◽  
Kyewon Park ◽  
Om P. Mishra ◽  
Darrah Johnson-McDaniel ◽  
Jacob W. Myerson ◽  
...  

Metal-oxide nanoparticles (MO-NPs), such as the highly bioreactive copper-based nanoparticles (CuO-NPs), are widely used in manufacturing of hundreds of commercial products. Epidemiological studies correlated levels of nanoparticles in ambient air with a significant increase in lung disease. CuO-NPs, specifically, were among the most potent in a set of metal-oxides and carbons studied in parallel regarding DNA damage and cytotoxicity. Despite advances in nanotoxicology research and the characterization of their toxicity, the exact mechanism(s) of toxicity are yet to be defined. We identified chlorination toxicity as a damaging consequence of inflammation and myeloperoxidase (MPO) activation, resulting in macromolecular damage and cell damage/death. We hypothesized that the inhalation of CuO-NPs elicits an inflammatory response resulting in chlorination damage in cells and lung tissues. We further tested the protective action of LGM2605, a synthetic small molecule with known scavenging properties for reactive oxygen species (ROS), but most importantly, for active chlorine species (ACS) and an inhibitor of MPO. CuO-NPs (15 µg/bolus) were instilled intranasally in mice and the kinetics of the inflammatory response in lungs was evaluated 1, 3, and 7 days later. Evaluation of the protective action of LGM2605 was performed at 24 h post-challenge, which was selected as the peak acute inflammatory response to CuO-NP. LGM2605 was given daily via gavage to mice starting 2 days prior to the time of the insult (100 mg/kg). CuO-NPs induced a significant inflammatory influx, inflammasome-relevant cytokine release, and chlorination damage in mouse lungs, which was mitigated by the action of LGM2605. Preventive action of LGM2605 ameliorated the adverse effects of CuO-NP in lung.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Matt Yousefzadeh ◽  
Chathurika Henpita ◽  
Rajesh Vyas ◽  
Carolina Soto-Palma ◽  
Paul Robbins ◽  
...  

Aging is a complex process that results in loss of the ability to reattain homeostasis following stress, leading, thereby, to increased risk of morbidity and mortality. Many factors contribute to aging, such as the time-dependent accumulation of macromolecular damage, including DNA damage. The integrity of the nuclear genome is essential for cellular, tissue, and organismal health. DNA damage is a constant threat because nucleic acids are chemically unstable under physiological conditions and vulnerable to attack by endogenous and environmental factors. To combat this, all organisms possess highly conserved mechanisms to detect and repair DNA damage. Persistent DNA damage (genotoxic stress) triggers signaling cascades that drive cells into apoptosis or senescence to avoid replicating a damaged genome. The drawback is that these cancer avoidance mechanisms promote aging. Here, we review evidence that DNA damage plays a causal role in aging. We also provide evidence that genotoxic stress is linked to other cellular processes implicated as drivers of aging, including mitochondrial and metabolic dysfunction, altered proteostasis and inflammation. These links between damage to the genetic code and other pillars of aging support the notion that DNA damage could be the root of aging.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009219
Author(s):  
Michael G. Mfarej ◽  
Robert V. Skibbens

Roberts syndrome (RBS) is a rare developmental disorder that can include craniofacial abnormalities, limb malformations, missing digits, intellectual disabilities, stillbirth, and early mortality. The genetic basis for RBS is linked to autosomal recessive loss-of-function mutation of the establishment of cohesion (ESCO) 2 acetyltransferase. ESCO2 is an essential gene that targets the DNA-binding cohesin complex. ESCO2 acetylates alternate subunits of cohesin to orchestrate vital cellular processes that include sister chromatid cohesion, chromosome condensation, transcription, and DNA repair. Although significant advances were made over the last 20 years in our understanding of ESCO2 and cohesin biology, the molecular etiology of RBS remains ambiguous. In this review, we highlight current models of RBS and reflect on data that suggests a novel role for macromolecular damage in the molecular etiology of RBS.


Author(s):  
Devasahayam Jaya Balan ◽  
Tamilselvam Rajavel ◽  
Mamali Das ◽  
Sethuraman Sathya ◽  
Mahalingam Jeyakumar ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
A. N. Karunasiri ◽  
C. M. Senanayake ◽  
H. Hapugaswatta ◽  
N. Jayathilaka ◽  
K. N. Seneviratne

Coconut oil meal, a cheap by-product of coconut oil production, is a rich source of phenolic antioxidants. Many age-related diseases are caused by reactive oxygen species- (ROS-) induced damage to macromolecules such as lipids, proteins, and DNA. In the present study, the protective effect of the phenolic extract of coconut oil meal (CMPE) against macromolecular oxidative damage was evaluated using in vitro and in vivo models. Sunflower oil, bovine serum albumin (BSA), and plasmid DNA were used in the in vitro study, and thiobarbituric acid reactive substances (TBARS), protein carbonyl, and nicked DNA were evaluated as oxidation products. The inhibitory effect of CMPE against H2O2-induced macromolecular damage was evaluated using cultured HEp-2 cells. The results indicate that CMPE inhibits macromolecular damage both in vitro and in vivo. In addition, CMPE regulates redox status of HEp-2 cells under oxidative stress conditions by maintaining higher reduced glutathione levels. There was no significant difference in the expression of glutathione peroxidase in stressed and unstressed cells suggesting that CMPE regulates the cellular oxidative stress responses without affecting the expression of oxidative stress response genes. Oral feeding of Wistar rats with CMPE improves the serum and plasma antioxidant status without causing any toxic effects.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 211 ◽  
Author(s):  
Francesco Ciccarese ◽  
Vittoria Raimondi ◽  
Evgeniya Sharova ◽  
Micol Silic-Benussi ◽  
Vincenzo Ciminale

Reactive oxygen species (ROS) constitute a homeostatic rheostat that modulates signal transduction pathways controlling cell turnover. Most oncogenic pathways activated in cancer cells drive a sustained increase in ROS production, and cancer cells are strongly addicted to the increased activity of scavenging pathways to maintain ROS below levels that produce macromolecular damage and engage cell death pathways. Consistent with this notion, tumor cells are more vulnerable than their normal counterparts to pharmacological treatments that increase ROS production and inhibit ROS scavenging. In the present review, we discuss the recent advances in the development of integrated anticancer therapies based on nanoparticles engineered to kill cancer cells by raising their ROS setpoint. We also examine nanoparticles engineered to exploit the metabolic and redox alterations of cancer cells to promote site-specific drug delivery to cancer cells, thus maximizing anticancer efficacy while minimizing undesired side effects on normal tissues.


Sign in / Sign up

Export Citation Format

Share Document