scholarly journals A Family with a Novel Mutation and Polycythemia Vera

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4875-4875
Author(s):  
Mayra C. Robinson ◽  
Majd T Ghanim ◽  
Shayla Bergmann

Abstract Background. Chronic myeloproliferative neoplasms are derived from myeloproliferation of a single hematopoietic stem cell and result in either erythrocythemia or thrombocytosis. Polycythemia Vera (PV) is defined by persistent proliferation of red cell mass in the peripheral blood and bone marrow with hemoglobin more than or equal to 16.5 gr/dL (49% Hematocrit) in males and 16 gr/dL (48% Hematocrit) in females. Around 98% of patients with PV harbor an acquired Janus Kinase 2 mutation, namely JAK2V617F. Other well described mutations in PV patients include the EPOR gene, Hypoxia-inducible factor 2 alpha (HIF2A) gene, PHD2 gene mutations and the rare Hemoglobin Tarrant. These mutations and other identified predisposing gene variants have all accounted for familial cases of PV. Presence of specific mutations can be associated with increased risk of myelodysplastic syndrome, progression of disease, and neoplasms which causes a decreased overall survival. Methods: We reviewed the charts and collected clinical information of 3 generations of one family with erythrocythemia, including PV diagnostic testing. Results: The proband, a 3-year-old female, presented to our clinic at 6 months of age with a hemoglobin of 16 gr/dL (upper limit of normal for age is 12.5 gr/dL). Family consisted of 3 generations of related females (maternal grandmother, mother and daughter) with the clinical characteristics of PV as described above, requiring frequent phlebotomy. Genetic testing, for known PV mutations, on the proband revealed no identifiable mutations, similar to the mother's and grandmother's prior genetic testing. The proband had no other laboratory abnormalities, and a bone marrow biopsy and aspirate examination was normal. Now 3 years of age, she has been undergoing phlebotomy every 3 months since diagnosis; further testing with exome gene sequencing showed c.136G>A mutation on EPO gene, a variant of unknown significance. Discussion. Literature review showed 2 previous reports of c.136G>A mutation in the EPO gene. In 2015, Taylor et al described the mutation in two families with erythrocytosis. Their project was aimed at evaluating whole-genome sequencing for diagnosis of families with high suspicion of a genetic component to their clinical presentation with no previously identified pathogenic variants. They concluded that c.136G>A is of autosomal dominant inheritance. Later described in 2016 by Camps et al., the variant was also found in 4 different non-related patients after whole genome sequencing. None of the previous citations demonstrated causality. Determination of predisposing gene mutations, using exome gene sequencing specifically for families with an unknown mutation may help clinicians with prognosis, genetic counseling, and possibly specific treatments. Although an interesting result, a causality between the variant identified and the patient in this report has not yet been verified. Therefore, more testing and reports of this mutation are needed. Further steps in our case will include whole exome sequencing of the proband's family members with idiopathic erythrocytosis to assess the presence of this variant in the whole family. Identification of a specific familial inherited gene mutation resulting in PV can help classify patients based on the mutation. This will help predict disease course, improve quality of life and determine risk of disease transformation. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2414-2414
Author(s):  
Eric S.K. Ho ◽  
Howard C.H. Chow ◽  
Chris T.L. Chan ◽  
Ruibang Luo ◽  
Henry C.M. Leung ◽  
...  

Abstract Abstract 2414 Donor cell leukemia (DCL) is a rare occurrence and refers to leukemia of donor origin in patients who have received allogeneic hematopoietic stem cell transplantation (HSCT). We have previously described a male patient with IgG-κ myeloma who received non-myeloablative allogeneic HSCT from a HLA-matched brother and developed complex karyotype acute myeloid leukemia (AML) of donor origin 10 years after transplantation. He achieved complete remission (CR) with standard induction and consolidation chemotherapy but relapsed one year afterwards. We hypothesized that a comparison of the donor HSC before transplantation (pre-leukemic) and the subsequent AML at whole genome level will provide a unique dataset that may shed light on the pathogenesis of leukemia. DNA was extracted from an aliquot of donor mobilized peripheral blood mononuclear cells (mPBMNC) frozen before transplantation as well as unfractionated and CD34+ myeloblasts of the patient's bone marrow at diagnosis and subsequent relapse of AML. The complete donor origin of the AML was confirmed by PCR based on polymorphic STRs. Whole-genome sequencing (WGS) was performed to sequence paired-end reads generated by Illumina HiSeq 2000. Reads were aligned to the human referecne genome (hg19, NCBI37) by SOAP3 and analysed to detect single nucleotide variants (SNVs), small insertion and deletion (indels) and copy number variations (CNVs). Selected genes after filtering were independently validated by Sanger sequencing. There were 835M and 810M 100bp paried-end reads with insert distance of 500bp generated from donor mPBMNC and CD34+ myeloblasts of the relapsed DCL with respective mean depths of 43.2X and 42.6X after alignment. The digital karytoyping based on the read depth was consistent with that by conventional cytogenetic study. 3,979,582 and 1,020,717 SNVs and indels were detectable from both samples. Based on the Catalog of Somatic Mutations in Cancer (COSMIC) and excluding those asian specific wildtypes annotated in 1000 genome project, 11 SNVs and 15 indels within coding sequence with potential roles as tumor suppressors or oncogenes were identified. On the other hand, there were 128,752 and 56,330 SNVs and indels detected exclusively in DCL. Those putative non-pathogenic SNP and those changes locating outside the gene regions were filtered. Within the gene region, SNVs in introns and synonymous mutations were also filtered. 142 non-synonymous SNVs (139 missense and 3 nonsense mutations) were identified of which 25 were considered as statistically highly confident and 17 of them could be confirmed by Sanger Sequencing. Twelve of these were also identified from the whole BM sample of DCL at diagnosis. These candidates include transcription factor (SALL1), metabolic enzymes (UGT1A5, SPEG), membrane protein (TMC6, SCN3A), cytoskeleton protein (MYH10), ribonucleoprotein (RAVER1), secreted protein (WNT7A), protein involved in DNA damage repair (APLF) and others (PRPF8, ZNF518B and MKRN3). 26 indels were indentified in the coding region of which 5 were considered as statistically highly confident, however, only one indel could be confirmed by Sanger Sequencing in the relapse sample and was not present in the diagnostic sample. The WGS performed in paired pre-leukemic (donor HSC) and leukemic (DCL) human samples has provided us with unique opportunities to dissect the genetic changes in HSC that may contribute to the initiation of AML with complex karyotype. The potential impacts of bone marrow microenvironment in this patient with myeloma in inducing DCL are also being evaluated. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Michael Abbott ◽  
Lynda McKenzie ◽  
Blanca Viridiana Guizar Moran ◽  
Sebastian Heidenreich ◽  
Rodolfo Hernández ◽  
...  

AbstractNovel developments in genomic medicine may reduce the length of the diagnostic odyssey for patients with rare diseases. Health providers must thus decide whether to offer genome sequencing for the diagnosis of rare conditions in a routine clinical setting. We estimated the costs of singleton standard genetic testing and trio-based whole genome sequencing (WGS), in the context of the Scottish Genomes Partnership (SGP) study. We also explored what users value about genomic sequencing. Insights from the costing and value assessments will inform a subsequent economic evaluation of genomic medicine in Scotland. An average cost of £1,841 per singleton was estimated for the standard genetic testing pathway, with significant variability between phenotypes. WGS cost £6625 per family trio, but this estimate reflects the use of WGS during the SGP project and large cost savings may be realised if sequencing was scaled up. Patients and families valued (i) the chance of receiving a diagnosis (and the peace of mind and closure that brings); (ii) the information provided by WGS (including implications for family planning and secondary findings); and (iii) contributions to future research. Our costings will be updated to address limitations of the current study for incorporation in budget impact modelling and cost-effectiveness analysis (cost per diagnostic yield). Our insights into the benefits of WGS will guide the development of a discrete choice experiment valuation study. This will inform a user-perspective cost–benefit analysis of genome-wide sequencing, accounting for the broader non-health outcomes. Taken together, our research will inform the long-term strategic development of NHS Scotland clinical genetics testing services, and will be of benefit to others seeking to undertake similar evaluations in different contexts.


2017 ◽  
Vol 20 (4) ◽  
pp. 435-443 ◽  
Author(s):  
Anath C Lionel ◽  
Gregory Costain ◽  
Nasim Monfared ◽  
Susan Walker ◽  
Miriam S Reuter ◽  
...  

Author(s):  
Joseph Shea ◽  
Tanya A. Halse ◽  
Donna Kohlerschmidt ◽  
Pascal Lapierre ◽  
Herns A. Modestil ◽  
...  

Rapid and reliable detection of rifampin (RIF) resistance is critical for the diagnosis and treatment of drug-resistant and multi-drug resistant (MDR) tuberculosis. Discordant RIF phenotype/genotype susceptibility results remain a challenge due to the presence of rpoB mutations which do not confer high levels of RIF resistance as have been exhibited in strains with mutations such as Ser450Leu. These strains, termed low-level RIF resistant, exhibit elevated RIF minimum inhibitory concentrations (MICs) compared to fully susceptible strains, however remain phenotypically susceptible by mycobacteria growth indicator tube (MGIT) testing and have been associated with poor patient outcomes. Here we assess RIF resistance prediction by whole-genome sequencing (WGS) among a set of 1779 prospectively tested strains by both prevalence of rpoB gene mutation and phenotype as part of routine clinical testing during a 21/2-year period. During this time, 139 strains were found to have nonsynonymous rpoB mutations, 53 of which were associated with RIF resistance, including both low-level and high-level resistance. Resistance to RIF (1.0 μg/mL in MGIT) was identified in 43 (81.1%) isolates. The remaining 10 (18.9%) strains were susceptible by MGIT, however were confirmed to be low-level RIF resistant by MIC testing. Full rpoB gene sequencing overcame the limitations of critical concentration phenotyping, probe-based genotyping, and partial-gene sequencing methods. Universal clinical WGS with concurrent phenotypic testing provided a more complete understanding of the prevalence and type of rpoB mutations and their association with RIF resistance in New York.


2020 ◽  
Vol 21 (13) ◽  
pp. 957-962
Author(s):  
Charbel Hobeika ◽  
Gaelle Rached ◽  
Alain Chebly ◽  
Eliane Chouery ◽  
Hampig Raphael Kourie

Many biomarkers indicate prognosis in chronic lymphocytic leukemia; such as fluorescence in situ hybridization testing: 17p or 11q deletions have a worse prognosis than trisomy 12, 13q deletion or normal result, or the mutational status of the immunoglobulin heavy chain (IGHV): unmutated IGHV have a worse prognosis than mutated IGHV. Recently, many gene mutations ( TP53, NOTCH1 etc.,) have been linked to a worse prognosis. With the new era of high-throughput sequencing, it has become easier to study gene mutations and their implication in predicting prognosis. In this review, we aim to review all the studies that performed whole-exome sequencing or whole-genome sequencing on chronic lymphocytic leukemia cells and explore the implication of various genes in disease prognosis.


2014 ◽  
Vol 53 (2) ◽  
pp. 722-726 ◽  
Author(s):  
Christelle Mazuet ◽  
Jean Sautereau ◽  
Christine Legeay ◽  
Christiane Bouchier ◽  
Philippe Bouvet ◽  
...  

An outbreak of human botulism was due to consumption of ham containing botulinum neurotoxins B and E. AClostridium botulinumtype E strain isolated from ham was assigned to a new subtype (E12) based onbont/Egene sequencing and belongs to a new multilocus sequence subtype, as analyzed by whole-genome sequencing.


2020 ◽  
Author(s):  
Bernard J. Pope ◽  
Mark Clendenning ◽  
Christophe Rosty ◽  
Khalid Mahmood ◽  
Peter Georgeson ◽  
...  

AbstractBackgroundPeople who develop mismatch repair (MMR) deficient cancer in the absence of a germline MMR gene pathogenic variant or hypermethylation of the MLH1 gene promoter in their tumor are classified as having suspected Lynch syndrome (SLS). We applied germline whole genome sequencing (WGS) and targeted and genome-wide tumor sequencing approaches to identify the underlying cause of tumor MMR-deficiency in SLS.MethodsGermline WGS was performed on 14 cancer-affected people with SLS, including two sets of first-degree relatives. Tumor tissue was sequenced for somatic MMR gene mutations by targeted, whole exome sequencing or WGS. Germline pathogenic variants, including complex structural rearrangements and non-coding variants, were assessed for the MMR genes. Tumor mutation burden and mutational signatures.ResultsGermline WGS identified pathogenic MMR variants in 3 of the 14 (21.4%) SLS cases including a 9.5Mb inversion disrupting exons 1-7 of MSH2 in a mother and daughter. Excluding these 3 MMR carriers, tumor sequencing identified at least two somatic MMR gene mutations in 8/11 (72.7%) tumors tested, supporting a non-inherited cause of tumor MMR-deficiency. In the second mother-daughter pair, the combined analysis of germline and tumor by WGS supported a somatic rather than inherited cause of their tumor MMR-deficiency, through presence of double somatic MSH2 mutations in their respective tumors.ConclusionGermline WGS of people with SLS improved the identification of Lynch syndrome. When coupled with tumor sequencing, >70% of the people with SLS were resolved as having double somatic MMR mutations and a non-inherited cause for their tumor MMR-deficiency.


Sign in / Sign up

Export Citation Format

Share Document