scholarly journals The Genomic and Transcriptomic Landscape of Double-Refractory Multiple Myeloma

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3056-3056 ◽  
Author(s):  
Bachisio Ziccheddu ◽  
Giulia Biancon ◽  
Chiara De Philippis ◽  
Filippo Bagnoli ◽  
Francesco Maura ◽  
...  

In Multiple myeloma (MM) no treatment has a curative potential and even complete response to novel agents such as proteasome inhibitors (PIs) and immunomodulatory agents (IMiDs) are followed by relapse over time. Next generation sequencing (NGS) has showed how MM at diagnosis is defined by several somatic mutations, but only few drivers, even fewer "druggable" mutations, and many found at a subclonal level. At relapse, targeted studies have shown occasional mutations in drug target genes but the genomic and transcriptomic determinants of chemoresistance in MM remains elusive. We selected 42 MM patients refractory to both lenalidomide and PIs. Whole exome sequencing was performed in 40 of them, and RNAseq in 27. Clinical annotation was available for all patients. Standard analysis pipelines where applied to analyze mutations, copy number alterations (CNAs), mutational signatures, gene expression and expressed mutations. Patients received a median of 3 lines of treatment, with median overall survival of 14.6 months from sampling. We found a median of 77.5 mutations per patient, which is more than what reported at diagnosis (Bolli et al, Nature Communications 2014;5:2997). 100% of samples showed evidence of subclonality, and 37% of them exhibited a higher number of subclonal than clonal variants. Therefore, even at this advanced stage the MM genome is evolving and is composed of different subclones that may display different chemosensitivity. The mutational landscape was also different. TP53 mutations were the second most common after KRAS (20% and 17.5%, respectively). Interestingly TP53 mutations all clustered in patients receiving bortezomib as the last line of treatment. Only 2 patients showed a CRBN mutation, both subclonal. Combining mutations and CNA analysis, the TP53 pathway was the most frequently inactivated (45% of patients). Altogether, mutations or deletions of genes in the CRBN E3 ubiquitin ligase complex were found in 32.5% of patients, while proteasomal subunit genes were infrequently hit. Refractory cases were also uniquely characterized by a novel signature linked to exposure to alkylating agents, whose activity was more pronounced after high-dose melphalan suggesting a mutagenic effect of the drug on residual cells at the time of transplant. Whether this has any pathogenetic role on the disease course remains to be elucidated. RNAseq analysis did not show any influence of treatment or mutational data on the clustering of samples, which was mainly influenced by karyotypic events. The main cluster was composed by non-hyperdiploid patients with both amp(1q) and del(13): these showed CCND2 and MCL1 upregulation, the latter representing a marker of venetoclax resistance and novel target of experimental treatments. Only 26.3% of mutations were expressed, and this correlated with the clonality level of the mutation. However, most mutations in driver genes were expressed, with the notable exception of those causing nonsense mediated decay. Overall, classical high-risk features or CRBN pathway mutations were found in 65% of the cohort. However, only amp(1q) predicted survival in our cohort. The lack of prognostic value of high-risk lesions is likely explained by a higher prevalence of such features in double-refractory stages. Our data suggest that gene mutation is not a preferred mode of evolution of drug resistance in MM. Chemoresistance of the bulk tumor population is likely attained though differential, yet converging evolution of different subclones that are overall highly variable from patient to patient and within the same patient. Disclosures Kastritis: Prothena: Honoraria; Genesis: Honoraria; Amgen: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Takeda: Honoraria; Pfizer: Honoraria. Dimopoulos:Sanofi Oncology: Research Funding. Cavo:bms: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel accommodations, Speakers Bureau; sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; novartis: Honoraria; takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel accommodations, Speakers Bureau; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Corradini:Janssen: Honoraria, Other: Travel Costs; Takeda: Honoraria, Other: Travel Costs; Jazz Pharmaceutics: Honoraria; Gilead: Honoraria, Other: Travel Costs; Daiichi Sankyo: Honoraria; Celgene: Honoraria, Other: Travel Costs; Amgen: Honoraria; AbbVie: Consultancy, Honoraria, Other: Travel Costs; KiowaKirin: Honoraria; Kite: Honoraria; BMS: Other: Travel Costs; Sanofi: Honoraria; Servier: Honoraria; Roche: Honoraria; Novartis: Honoraria, Other: Travel Costs. Bolli:Celgene: Honoraria; Novartis: Honoraria; Gilead: Other: travel expenses.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1835-1835 ◽  
Author(s):  
Katrina M Piedra ◽  
Hani Hassoun ◽  
Larry W. Buie ◽  
Sean M. Devlin ◽  
Jessica Flynn ◽  
...  

Introduction Immunomodulatory agents (IMiD's) are associated with an increased risk of venous thromboembolism (VTE), particularly when combined with high dose steroids. Studies evaluating the use of lenalidomide-bortezomib-dexamethasone (RVD) and carfilzomib-lenalidomide-dexamethasone (KRD) in the frontline setting for multiple myeloma (MM) have reported a 6% and 24% incidence of thrombosis, respectively, despite primary thrombotic prophylaxis with aspirin (ASA) (Richardson, et al. Blood. 2010; Korde, et al. JAMA Oncol 2015). Recent data, including the Hokusai VTE Cancer Trial, have suggested that safety and efficacy of direct oral anticoagulants (DOACs) are preserved in the setting of treatment of solid malignancy-associated thrombosis (Raskob, et al. N Engl J Med. 2018; Mantha, et al. J Thromb Thrombolysis. 2017). Despite this data, there is limited experience and use of DOACs in prevention of thromboses in the setting of hematologic malignancies, specifically MM. After careful review of literature, since early 2018, we changed our clinical practice and routinely placed newly diagnosed MM (NDMM) patients receiving KRD at Memorial Sloan Kettering Cancer Center (MSKCC) on concomitant rivaroxaban 10 mg once daily, regardless of VTE risk stratification. In the following abstract, we present VTE rates and safety data for newly diagnosed MM patients receiving RVD with ASA vs. KRD with ASA vs. KRD with rivaroxaban prophylaxis. Methods This was an IRB-approved, single-center, retrospective chart review study. All untreated patients with newly diagnosed MM, receiving at least one cycle of RVD or KRD between January 2015 and October 2018 were included. The period of observation included the time between the first day of therapy until 90 days after completion of induction therapy. Patients were identified by querying the pharmacy database for carfilzomib or bortezomib administration and outpatient medication review of thromboprophylaxis with rivaroxaban or ASA. VTE diagnoses were confirmed by ICD-10 codes and appropriate imaging studies (computed tomography and ultrasound). Descriptive statistics were performed. Results During the observation period, 241 patients were identified to have received RVD or KRD in the frontline (99 RVD with ASA; 97 KRD with ASA; 45 KRD with rivaroxaban). Baseline characteristics were well distributed among the three arms, with a median age of 60 (30-94) in the RVD ASA arm, 62 (33-77) in the KRD ASA arm, and 60 (24-79) in the KRD rivaroxaban arm. Patients had International Staging System (ISS) stage 3 disease in 13% (N=13), 9.3% (N=9), and 11% (N=5) of the RVD ASA, KRD ASA, and KRD rivaroxaban arms, respectively. Median weekly doses of dexamethasone were higher in both KRD arms, 40 mg (20-40) vs. 20 mg (10-40) in the RVD ASA arm. The average initial doses of lenalidomide were 22 mg in the RVD ASA arm compared to 25 mg in both the KRD ASA and KRD rivaroxaban arms. After querying the pharmacy database, no patients were identified to have a history or concomitant use of erythropoietin stimulating agent (ESA) use. Treatment-related VTE's occurred in 4 patients (4.0%) in the RVD ASA arm, 16 patients (16.5%) in the KRD ASA arm, and in 1 patient (2.2%) in the KRD rivaroxaban arm. Average time to VTE was 6.15 months (Range 5.42, 9.73) after treatment initiation in the RVD ASA group, while it was 2.61 months (Range 0.43, 5.06) in the KRD ASA group and 1.35 months in the KRD rivaroxaban group. Minor, grade 1 bleeding events per the Common Terminology Criteria for Adverse Events (CTCAE) were identified in 1 (1.1%) patient in the RVD ASA arm, 5 (5.2%) patients in the KRD ASA arm, and 1 (2.2%) patient in the KRD rivaroxaban arm. Conclusion More efficacious MM combination therapies have been found to increase the risk of VTE when using ASA prophylaxis, indicating better thromboprophylaxis is needed. We found patients receiving ASA prophylaxis with KRD were more likely to experience a VTE and these events occurred earlier compared to patients receiving ASA prophylaxis with RVD. Importantly, the rate of VTE was reduced to the same level as ASA prophylaxis with RVD when low-dose rivaroxaban 10 mg daily was used with KRD, and without necessarily increasing bleeding risk. Our retrospective data support the development of prospective clinical trials further investigating DOAC use in thromboprophylaxis for NDMM patients receiving carfilzomib-based treatments. Figure Disclosures Hassoun: Novartis: Consultancy; Janssen: Research Funding; Celgene: Research Funding. Lesokhin:BMS: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria; Janssen: Research Funding; GenMab: Consultancy, Honoraria; Serametrix Inc.: Patents & Royalties; Genentech: Research Funding; Juno: Consultancy, Honoraria. Mailankody:Juno: Research Funding; Celgene: Research Funding; Janssen: Research Funding; Takeda Oncology: Research Funding; CME activity by Physician Education Resource: Honoraria. Smith:Celgene: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics and Precision Biosciences: Consultancy. Landgren:Theradex: Other: IDMC; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Other: IDMC; Sanofi: Membership on an entity's Board of Directors or advisory committees; Adaptive: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. OffLabel Disclosure: Off-label use of rivaroxaban for outpatient prophylaxis of venous thromboembolism (VTE) will be explicitly disclosed to the audience.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4116-4116
Author(s):  
Anna Dodero ◽  
Anna Guidetti ◽  
Fabrizio Marino ◽  
Cristiana Carniti ◽  
Stefania Banfi ◽  
...  

Introduction: Diffuse Large B-Cell Lymphoma (DLBCL) is an heterogeneous disease: 30-40% of cases have high expression of MYC and BCL2 proteins (Dual Expressor, DE) and 5-10% have chromosomal rearrangements involving MYC, BCL2 and/or BCL6 (Double-/ Triple-Hit, DH/TH). Although the optimal treatment for those high-risk lymphomas remains undefined, DA-EPOCH-R produces durable remission with acceptable toxicity (Dunleauvy K, Lancet 2018). TP53 mutation is an independent marker of poor prognosis in patients (pts) with DLBCL treated with R-CHOP therapy. However, its prognostic value in poor prognosis lymphomas, receiving intensive therapy, has not been investigated yet. Methods: A series of consecutive pts (n=87) with biopsy proven diagnosis of DE DLBCL (MYC expression ≥40% and BCL2 expression ≥ 50% of tumor cells) or DE-Single Hit (DE-SH, i.e., DE-DLBCL with a single rearrangement of either MYC, BCL2 or BCL6 oncogenes) or DE-DH/TH (MYC, BCL2 and/or BCL6 rearrangements obtained by FISH) were treated with 6 cycles of DA-EPOCH-R and central nervous system (CNS) prophylaxis consisting of two courses of high-dose intravenous Methotrexate. Additional eligibility criteria included age ≥18 years and adequate organ functions. Cell of origin (COO) was defined according to Hans algorithm [germinal center B cell like (GCB) and non GCB)]. TP3 mutations were evaluated by next generation sequencing (NGS) based on AmpliseqTM technology or Sanger sequencing and considered positive when a variant allelic frequency ≥10% was detected. Results: Eighty-seven pts were included [n=36 DE only, n=32 DE-SH (n=8 MYC, n=10 BCL2, n=14 BCL6), n=19 DE-DH/TH] with 40 patients (46%) showing a non GCB COO. Pts had a median age of 59 years (range, 24-79 years). Seventy-three pts (84%) had advanced disease and 44 (50%) an high-intermediate/high-risk score as defined by International Prognostic Index (IPI). Only 8 of 87 pts (9%) were consolidated in first clinical remission with autologous stem cell transplantation following DA-EPOCH-R. After a median follow-up of 24 months, 73 are alive (84%) and 14 died [n=12 disease (n=2 CNS disease); n=1 pneumonia; n=1 suicide]. The 2-year PFS and OS were 71% (95%CI, 60-80%) and 76% (95%CI, 61%-85%) for the entire population. For those with IPI 3-5 the PFS and OS were not significant different for DE and DE-SH pts versus DE-DH/TH pts [64% vs 57% p=0.77); 78% vs 57% p=0.12)]. The COO did not influence the outcome for DE only and DE-SH [PFS: 78% vs 71% (p=0.71); 92% vs 86% (p=0.16) for GCB vs non -GCB, respectively]. Fourty-six pts (53%;n=18 DE only, n=18 DE-SH, n=10 DE-DH/TH ) were evaluated for TP53 mutations with 11 pts (24%) carrying a clonal mutation (n=6 in DE, n=3 in DE-SH, n=2 in DE-DH/TH). The 2-year PFS and OS did not significantly change for pts DE and DE-SH TP53 wild type as compared to DE and DE-SH mutated [PFS: 84 % vs 77%, (p=0.45); OS: 87% vs 88%, (p=0.92)]. The two pts DE-DH/TH with TP53 mutation are alive and in complete remission.Conclusions: High risk DLBCL pts treated with DA-EPOCH-R have a favourable outcome independently from high IPI score, DE-SH and DE-DH/TH. Also the presence of TP53 mutations does not negatively affect the outcome of pts treated with this intensive regimen. The efficacy of DA-EPOCH-R in overcoming poor prognostic genetic features in DLBCL should be confirmed in a larger prospective clinical trial. Disclosures Rossi: Daiichi-Sankyo: Consultancy; Roche: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Jazz: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria; Mundipharma: Honoraria; BMS: Honoraria; Sandoz: Honoraria. Carlo-Stella:Takeda: Other: Travel, accommodations; F. Hoffmann-La Roche Ltd: Honoraria, Other: Travel, accommodations, Research Funding; Rhizen Pharmaceuticals: Research Funding; Celgene: Research Funding; Amgen: Honoraria; AstraZeneca: Honoraria; Janssen Oncology: Honoraria; MSD: Honoraria; BMS: Honoraria; Genenta Science srl: Consultancy; Janssen: Other: Travel, accommodations; Servier: Consultancy, Honoraria, Other: Travel, accommodations; Sanofi: Consultancy, Research Funding; ADC Therapeutics: Consultancy, Other: Travel, accommodations, Research Funding; Novartis: Consultancy, Research Funding; Boehringer Ingelheim: Consultancy. Corradini:AbbVie: Consultancy, Honoraria, Other: Travel Costs; KiowaKirin: Honoraria; Gilead: Honoraria, Other: Travel Costs; Amgen: Honoraria; Celgene: Honoraria, Other: Travel Costs; Daiichi Sankyo: Honoraria; Janssen: Honoraria, Other: Travel Costs; Jazz Pharmaceutics: Honoraria; Kite: Honoraria; Novartis: Honoraria, Other: Travel Costs; Roche: Honoraria; Sanofi: Honoraria; Takeda: Honoraria, Other: Travel Costs; Servier: Honoraria; BMS: Other: Travel Costs.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 976-976 ◽  
Author(s):  
Irene M. Ghobrial ◽  
Ashraf Z Badros ◽  
James J. Vredenburgh ◽  
Jeffrey Matous ◽  
Aaron M. Caola ◽  
...  

Abstract Purpose: This study aimed to determine the benefit of early therapeutic intervention with the combination of elotuzumab, lenalidomide, and dexamethasone in patients with high-risk smoldering multiple myeloma (SMM). The overarching objective of this trial is to determine progression free survival to symptomatic myeloma (MM). Furthermore, the study examined the activity and safety of the combination therapy in patients with high-risk SMM. Patients & Methods: Patients enrolled on study met eligibility for high-risk SMM based on the newly defined criteria proposed by Rajkumar et al, Blood 2014. Patients were administered weekly elotuzumab (10 mg/kg) on days 1, 8, 15, and 22 for the first two 28-day cycles while receiving lenalidomide on days 1-21. An initial cohort of patients were randomized to a low dose dexamethasone treatment arm (Arm B) based on the following stratification factors: age >65 years and high-risk cytogenetics based on t(4:14), t(14:16), 17p deletion or p53 mutation, and +1q amplification. For cycles 3-8, patients on both treatment arms were administered elotuzumab infusions on days 1, 8, and 15. Patients on treatment Arm A received dexamethasone (40mg) on days 1, 8 and 15. After 8 cycles or best response, patients were given the option to mobilize with either cyclophosphamide or plerixafor and collect stem cells for future transplant. Patients on both treatment arms were then allowed to continue on maintenance therapy where they were administered elotuzumab (20 mg/kg) on day 1, in combination with lenalidomide days 1-21 of a 28 day cycle. After 11 patients were enrolled on each arm, arm B closed due to similar activity and toxicity to the high-dose dexamethasone arm based on published data demonstrating that high-dose dexamethasone, given once a week, does not have a detrimental effect on the immune system in patients with smoldering myeloma. Results: In total, 39 patients were enrolled on this study from January 2015 to date, with the participation of eight sites. The median age of patients enrolled was 62 years (range 26 to 75) with 15 males (38%) and 24 females (62%). The median number of cycles completed is 6 (range 1 to 19). Therapy related grade 3 toxicities included hypophosphatemia (23%), neutropenia (8%), infection (8%), anemia (3%), pulmonary embolism (3%), rash (3%), and diarrhea (3%). No related grade 4 or 5 toxicities have occurred thus far. Stem cell collection was successful in all patients collected to date. Unrelated toxicities include one instance of grade 4 prolonged QTc Interval. Of the 34 evaluable patients enrolled to both arms of the study, the clinical benefit rate is 97%. The overall response rate is 71%, including 9 very good partial responses (26%) and 15 partial responses (44%). The VGPR cases are currently under evaluation of possible complete responses due to the potential interference of elotuzumab with immunoelectrophoresis. Thus far, no patients have progressed to active multiple myeloma during, or after, protocol therapy. Conclusion:The combination of elotuzumab, lenalidomide, and dexamethasone is very well tolerated among patients with high-risk SMM. The high response rates among this patient population, who would otherwise remain untreated, is a promising starting point for the paradigm shift towards early therapeutic intervention in patients with high-risk SMM. Disclosures Ghobrial: Amgen: Honoraria; Celgene: Honoraria, Research Funding; BMS: Honoraria, Research Funding; Novartis: Honoraria; Takeda: Honoraria; Noxxon: Honoraria. Matous:Seattle Genetics: Research Funding, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Takeda Pharmaceuticals International Co.: Speakers Bureau. Rosenblatt:Astex: Research Funding; BMS: Research Funding; DCPrime: Research Funding. Usmani:Sanofi: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Britsol-Myers Squibb: Consultancy, Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millenium: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Skyline: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Onyx: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Consultancy, Research Funding, Speakers Bureau; Array: Research Funding; Novartis: Speakers Bureau; Pharmacyclics: Research Funding; BioPharma: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Munshi:OncoPep Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1871-1871 ◽  
Author(s):  
Christopher P Venner ◽  
Richard Leblanc ◽  
Irwindeep Sandhu ◽  
Darrell J White ◽  
Andrew Belch ◽  
...  

Background: Carfilzomib is effective in the treatment of relapsed and refractory multiple myeloma (RRMM). Questions remain regarding optimal dosing strategies and combinations. The MCRN-003/MYX.1 single arm phase II clinical trial of high-dose once weekly carfilzomib in combination with dexamethasone and cyclophosphamide (wCCD) in RRMM met its primary endpoint with an overall response rate (ORR) ≥ 80% after 4 treatment cycles [Venner, Blood 2018 132:1984]. This abstract focuses on previously unreported protocol specified secondary and exploratory endpoints including progression free (PFS) and overall survival (OS). Methods: This multi-centre clinical trial is run through the Myeloma Canada Research Network (MCRN) with support from the Canadian Cancer Trials Group (CCTG). Patients who had 1-3 prior lines of therapy and without proteasome inhibitor (PI) refractory disease were eligible. Treatment consists of carfilzomib (20 mg/m2 day 1 of first cycle then escalated to 70 mg/m2 for all subsequent doses) given on days 1, 8, and 15 of a 28-day cycle, plus weekly oral dexamethasone 40 mg and cyclophosphamide 300 mg/m2 capped at 500 mg. Treatment continues until progression or intolerance, except for cyclophosphamide which is discontinued after 12 cycles. Secondary endpoints included toxicity, depth of response, PFS and OS as defined by International Myeloma Working Group Uniform Response Criteria (2016). Exploratory endpoints included the impact of cytogenetics (CG) and prior PI or lenalidomide exposure on efficacy, and the novel endpoint of serum free light chain (sFLC) escape, defined as a > 25% change in the difference of involved to uninvolved light chain with the absolute rise > 100mg/L, in individuals with disease previously measurable by serum or urine protein electrophoresis. This analysis is based on the locked database of 19 June, 2019. Results: Of 76 patients accrued, 75 were included in the analysis. One was ineligible due to prior bortezomib refractoriness. Thirty-nine percent received 1 prior line, 44% two prior lines and 17% three prior lines of therapy. High-risk cytogenetics (t(4;14), t(14;16) and/or del P53, considered positive at any level above local accepted threshold) were identified in 32%. Twenty percent had ISS stage III disease. The majority of participants were previously exposed to PI (87%) and lenalidomide (83%). The median duration of follow-up was 25 months. The ORR at any time was 85% (1 patient achieved a response after 4 cycles) with ≥ VGPR achieved in 68% and ≥ CR in 29%. The presence of high-risk CG conferred a worse ORR (75% vs 97% respectively, p = 0.013). Thirty-one patients have died with a median OS and median PFS of 27 months and 17 months respectively (figure 1). High risk CG conferred a worse median OS (18 months vs NR, p = 0.002) and a trend toward a worse median PFS with high risk CG (14 months vs 22 months, p = 0.06; figure 1). For patients with prior PI exposure the median OS and PFS were 27 and 17 months respectively. For patients with prior lenalidomide exposure median OS and PFS were 26 and 16 months respectively. Free light chain escape events were noted in 11 patients (15%) but was the only progression event in 3 (4%). For the remaining 8 patients the sFLC rise was a harbinger of traditional relapse by electrophoresis. The median PFS when sFLC escape was included as a progression event was 17 months. With updated toxicity data the most common ≥ grade 3 non-hematologic events were infection (40%), cardiac (15%, including 5 dyspnea and 1 pulmonary edema) and vascular (17%, including 7 with hypertension and 3 with thrombotic microangiopathy). To date 57 (76%) patients have discontinued carfilzomib, including 34 due to disease progression and 14 due to toxicity. Conclusion: This phase II trial demonstrates that wCCD remains a safe and effective regimen for RRMM. The survival data presented here is comparable to current phase II and III studies examining the weekly dosing strategy. No new toxicity signals are observed but cardiovascular risks remain an important factor in the use of carfilzomib-based therapies. Using sFLC escape does not negatively affect PFS outcomes but likely better characterizes progression as a harbinger of more traditional events detected by electrophoresis. This regimen will be a useful triplet-based option for RRMM especially in patients refractory to lenalidomide and otherwise ineligible for the carfilzomib-lenalidomide-dexamethasone combination. Disclosures Venner: J&J: Research Funding. Leblanc:Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees. Sandhu:Takeda: Honoraria; Amgen: Honoraria; Celgene: Honoraria; Pfizer: Honoraria; Janssen: Honoraria; gilead: Honoraria. White:Celgene: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Janssen: Consultancy, Honoraria. Reece:Takeda: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding; BMS: Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Membership on an entity's Board of Directors or advisory committees, Research Funding; Otsuka: Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Merck: Research Funding. Chen:Celgene: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Amgen: Honoraria. Louzada:Celgene: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Bayer: Honoraria. McCurdy:Janssen: Honoraria; Celgene: Honoraria. Hay:Janssen: Research Funding; Novartis: Research Funding; AbbVie: Research Funding; Kite: Research Funding; Takeda: Research Funding; Roche: Research Funding; Celgene: Research Funding; Seattle Genetics: Research Funding; MorphoSys: Research Funding; Gilead: Research Funding. OffLabel Disclosure: While Carfilzomib is approved for use in relapsed and refractory myeloma the combination with cyclophosphamide is not approved.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3069-3069 ◽  
Author(s):  
Antonio Palumbo ◽  
Federica Cavallo ◽  
Izhar Hardan ◽  
Barbara Lupo ◽  
Valter Redoglia ◽  
...  

Abstract Abstract 3069FN2 Background: High-dose chemotherapy with haemopoietic stem-cell improves outcome in multiple myeloma (MM). The introduction of novel agents questions the role of autologous stem-cell transplantation (ASCT) in MM patients. Aims: In this prospective randomized study, we compared conventional melphalan-prednisone-lenalidomide (MPR) with tandem high-dose melphalan (MEL200) in newly diagnosed MM patients younger than 65 years. Methods: All patients (N=402) received four 28-day cycles of lenalidomide (25 mg, d1-21) and low-dose dexamethasone (40 mg, d1, 8, 15, 22) (Rd) as induction. As consolidation, patients were randomized to MPR (N=202) consisting of six 28-day cycles of melphalan (0.18 mg/kg d1-4), prednisone (2 mg/kg d1-4) and lenalidomide (10 mg d1-21); or tandem melphalan 200 mg/m2 MEL200 (N=200) with stem-cell support. All patients enrolled were stratified according to International Staging System (stages 1 and 2 vs. stage 3) and age (<60 vs. ≥60 years). Progression-free survival (PFS) was the primary end point. Data were analyzed in intention-to-treat. Results: Response rates were similar: at least very good partial response (≥VGPR) rate was 60% with MPR vs. 58% with MEL200 (p=.24); the complete response (CR) rate was 20% with MPR vs. 25% with MEL200 (p=.49). After a median follow-up of 26 months, the 2-year PFS was 54% in MPR and 73% in MEL200 (HR=0.51, p<.001). The 2-year overall survival (OS) was similar in the two groups: 87% with MPR and 90% with MEL200 (HR 0.68, p=.19). In a subgroup analysis, MEL200 significantly prolonged PFS in both standard-risk patients without t(4;14) or t(14;16) or del17p abnormalities (2-year PFS was 46% in the MPR group vs. 78% in the MEL200 group, HR=0.57, p=.007) and high-risk patients with t(4;14) or t(14;16) or del17p abnormalities (2-year PFS was 27% for MPR vs. 71% for MEL200, HR=0.32, p=.004). In patients who achieved CR, the 2-year PFS was 66% for MPR vs. 87% for MEL200 (HR 0.26; p<.001); in those who achieved a partial response (PR), the 2-year PFS was 56% for MPR vs. 77% for MEL200 (HR 0.45; p<.001). In the MPR and MEL200 groups, G3-4 neutropenia was 55% vs. 89% (p<.001); G3-4 infections were 0% vs. 17% (p<.001); G3-4 gastrointestinal toxicity was 0% vs. 21% (p<.001); the incidence of second tumors was 0.5% in MPR patients and 1.5% in MEL200 patients (p=.12). Deep vein thrombosis rate was 2.44% with MPR vs. 1.13% with MEL200 (p=.43). Conclusions: PFS was significantly prolonged in the MEL200 group compared to MPR. This benefit was maintained in the subgroup of patients with standard- or high-risk cytogenetic features. Toxicities were significantly higher in the MEL200 group. This is the first report showing a PFS advantage for ASCT in comparison with conventional therapies including novel agents. These data will be updated at the meeting. Disclosures: Palumbo: celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Cavallo:Celgene: Honoraria; Janssen-Cilag: Honoraria. Cavo:celgene: Honoraria. Ria:celgene: Consultancy. Caravita Di Toritto:Celgene: Honoraria, Research Funding. Di Raimondo:celgene: Honoraria. Boccadoro:celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 797-797
Author(s):  
Talha Badar ◽  
Mark R. Litzow ◽  
Rory M. Shallis ◽  
Jan Philipp Bewersdorf ◽  
Antoine Saliba ◽  
...  

Abstract Background: TP53 mutations occur in 10-20% of patients with AML, constitute high-risk disease as per ELN criteria, and confer poorer prognosis. Venetoclax combination therapies and CPX-351 were recently approved for AML treatment and lead to improved outcomes in subsets of high-risk AML, however the most effective approach for treatment of TP53-mutated (m) AML remains unclear. In this study we explored the clinical outcome of TP53m AML patients treated over the last 8 years as novel therapies have been introduced to our therapeutic armamentarium. Methods: We conducted a multicenter observational study in collaboration with 4 U.S. academic centers and analyzed clinical characteristics and outcome of 174 TP53m AML patients diagnosed between March 2013 and February 2021. Mutation analysis was performed on bone marrow specimens using 42, 49, 199, or 400 gene targeted next generation sequencing (NGS) panels. Patients with an initial diagnosis of AML were divided into 4 groups (GP) based on the progressive use of novel therapies in clinical trials and their approvals as AML induction therapy during different time periods: 2013-2017 (GP1, n= 37), 2018-2019 (GP2, n= 53), 2019-2020 (GP3, n= 48) and 2020-2021 (GP4, n= 36) to analyze difference in outcome. Results: Baseline characteristics were not significantly different across different GP, as shown in Table 1. Median age of patients was 68 (range [R], 18-83), 65 (R, 29-88), 69 (R, 37-90) and 70 (R, 51-97) years in GP1-4, respectively (p=0.40). The percentage of patients with de novo AML/secondary AML/therapy-related AML in GP1-4 was 40/40/20, 36/29/24, 37.5/37.5/25 and 28/52/20, respectively (p=0.82). The proportion of patients with complex cytogenetics (CG) was 92%, 89%, 96% and 94% in GP1-4, respectively (p=0.54). The median TP53m variant allele frequency (VAF) was 48% (range [R], 5-94), 42% (R, 5-91), 45% (R, 10-94) and 60% (R, 8-82) in GP1-4, respectively (p=0.38). Four (11%), 13 (24.5%), 10 (21%) and 9 (25%) patients had multiple TP53 mutations in GP1-4, respectively (p=0.33). The proportion of patients who received 3+7 (30%, 16%, 6% & 8%; p=0.01), HMA only (11%, 18%, 2% & 8%; p=0.06), venetoclax-based (2.5%, 12%, 48%, & 61%; p &lt;0.01) and CPX-351 induction (16%, 40%, 28% & 5%; p&lt;0.001) were varied in GP1-4, respectively. The rate of CR/CRi was 22%, 26%, 28% and 18% in GP1-4, respectively (p=0.63). Treatment related mortality during induction was observed in 3%, 7%, 10% and 17% of patients in GP1-4, respectively (p=0.18). Overall, 28 (16%) patients received allogeneic hematopoietic stem cell transplantation (alloHCT) after induction/consolidation: 22%, 15%, 17% and 11% in GP1-4, respectively (p=0.67). In subset analysis, there was no difference in the rate of CR/CRi with venetoclax-based regimens vs. others (39% vs 61%, p=0.18) or with CPX-351 vs. others (25% vs 75%, p=0.84). The median progression-free survival was 7.7, 7.0, 5.1 and 6.6 months in GP1-4, respectively (p=0.60, Fig 1A). The median overall survival (OS) was 9.4, 6.1, 4.0 and 8.0 months in GP1-4, respectively (p=0.29, Fig 1B). In univariate analysis for OS, achievement of CR/CRi (p&lt;0.001) and alloHCT in CR1 (p&lt;0.001) associated with favorable outcome, whereas complex CG (p=0.01) and primary refractory disease (p&lt;0.001) associated with poor outcome. Multiple TP53 mutations (p=0.73), concurrent ASXL1m (p=0.86), extra-medullary disease (p=0.92), ≥ 3 non-TP53m mutations (p=0.72), TP53m VAF ≥ 40% vs. &lt; 40% (p=0.25), induction with CPX-351 vs. others (p=0.59) or venetoclax-based regimen vs. others (p=0.14) did not show significance for favorable or poor OS in univariate analysis. In multivariable analysis, alloHCT in CR1 (hazard ratio [HR]=0.28, 95% CI: 0.15-0.53; p=0.001) retained an association with favorable OS and complex CG (HR 4.23, 95%CI: 1.79-10.0; p=0.001) retained an association with dismal OS. Conclusion: We present the largest experience with TP53m AML patients analyzed by NGS. Although outcomes were almost universally dismal, alloHCT appears to improve the long-term survival in a subset of these patients. Effective therapies are warranted to successfully bridge patients to alloHCT and to prolong survival for transplant ineligible patients. Figure 1 Figure 1. Disclosures Badar: Pfizer Hematology-Oncology: Membership on an entity's Board of Directors or advisory committees. Litzow: Omeros: Other: Advisory Board; Pluristem: Research Funding; Actinium: Research Funding; Amgen: Research Funding; Jazz: Other: Advisory Board; AbbVie: Research Funding; Astellas: Research Funding; Biosight: Other: Data monitoring committee. Shallis: Curis: Divested equity in a private or publicly-traded company in the past 24 months. Goldberg: Celularity: Research Funding; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; Aprea: Research Funding; Arog: Research Funding; DAVA Oncology: Honoraria; Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Research Funding; Prelude Therapeutics: Research Funding; Aptose: Consultancy, Research Funding; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Atallah: BMS: Honoraria, Speakers Bureau; Takeda: Consultancy, Research Funding; Amgen: Consultancy; Abbvie: Consultancy, Speakers Bureau; Novartis: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Research Funding. Foran: revolution medicine: Honoraria; gamida: Honoraria; bms: Honoraria; pfizer: Honoraria; novartis: Honoraria; takeda: Research Funding; kura: Research Funding; h3bioscience: Research Funding; OncLive: Honoraria; servier: Honoraria; aptose: Research Funding; actinium: Research Funding; abbvie: Research Funding; trillium: Research Funding; sanofi aventis: Honoraria; certara: Honoraria; syros: Honoraria; taiho: Honoraria; boehringer ingelheim: Research Funding; aprea: Research Funding; sellas: Research Funding; stemline: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1589-1589
Author(s):  
Fabian Frontzek ◽  
Marita Ziepert ◽  
Maike Nickelsen ◽  
Bettina Altmann ◽  
Bertram Glass ◽  
...  

Introduction: The R-MegaCHOEP trial showed that dose-escalation of conventional chemotherapy necessitating autologous stem cell transplantation (ASCT) does not confer a survival benefit for younger patients (pts) with high-risk aggressive B-cell lymphoma in the Rituximab era (Schmitz et al., Lancet Oncology 2012; 13, 1250-1259). To describe efficacy and toxicity over time and document the long-term risks of relapse and secondary malignancy we present the 10-year follow-up of this study. Methods: In the randomized, prospective phase 3 trial R-MegaCHOEP younger pts aged 18-60 years with newly diagnosed, high-risk (aaIPI 2-3) aggressive B-cell lymphoma were assigned to 8 cycles of CHOEP (cyclophosphamide, doxorubcine, vincristine, etoposide, prednisone) or 4 cycles of dose-escalated high-dose therapy (HDT) necessitating repetitive ASCT both combined with Rituximab. Both arms were stratified according to aaIPI, bulky disease, and center. Primary endpoint was event-free survival (EFS). All analyses were calculated for the intention-to-treat population. This follow-up report includes molecular data based on immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) for MYC (IHC: 31/92 positive [40-100%], FISH: 14/103 positive), BCL2 (IHC: 65/89 positive [50-100%], FISH: 23/111 positive) and BCL6 (IHC: 52/86 positive [30-100%], FISH: 34/110 positive) and data on cell of origin (COO) classification according to the Lymph2CX assay (GCB: 53/88; ABC: 24/88; unclassified: 11/88). Results: 130 pts had been assigned to R-CHOEP and 132 to R-MegaCHOEP. DLBCL was the most common lymphoma subtype (~80%). 73% of pts scored an aaIPI of 2 and 27% an aaIPI of 3. 60% of pts had an initial lymphoma bulk and in 40% more than 1 extranodal site was involved. After a median observation time of 111 months, EFS at 10 years was 57% (95% CI 47-67%) in the R-CHOEP vs. 51% in the R-MegaCHOEP arm (42-61%) (hazard ratio 1.3, 95% CI 0.9-1.8, p=0.228), overall survival (OS) after 10 years was 72% (63-81%) vs. 66% (57-76%) respectively (p=0.249). With regard to molecular characterization, we were unable to detect a significant benefit for HDT/ASCT in any subgroup analyzed. In total, 16% of pts (30 pts) relapsed after having achieved a complete remission (CR). 23% of all relapses (7 pts) showed an indolent histology (follicular lymphoma grade 1-3a) and 6 of these pts survived long-term. In contrast, of 23 pts (77%) relapsing with aggressive DLBCL or unknown histology 18 pts died due to lymphoma or related therapy. The majority of relapses occurred during the first 3 years after randomization (median time: 22 months) while after 5 years we detected relapses only in 5 pts (3% of all 190 pts prior CR). 11% of pts were initially progressive (28 pts) among whom 71% (20 pts) died rapidly due to lymphoma. Interestingly, the remaining 29% (8 pts) showed a long-term survival after salvage therapy (+/- ASCT); only 1 pt received allogeneic transplantation. The frequency of secondary malignancies was very similar in both treatment arms (9% vs. 8%) despite the very high dose of etoposide (total 4g/m2)in the R-MegaCHOEP arm. We observed 2 cases of AML and 1 case of MDS per arm. In total 70 pts (28%) have died: 30 pts due to lymphoma (12%), 22 pts therapy-related (11 pts due to salvage therapy) (9%), 8 pts of secondary neoplasia (3%), 5 pts due to concomitant disease (2%) and 5 pts for unknown reasons. Conclusions: This 10-year long-term follow-up of the R-MegaCHOEP trial confirms the very encouraging outcome of young high-risk pts following conventional chemotherapy with R-CHOEP. High-dose therapy did not improve outcome in any subgroup analysis including molecular high-risk groups. Relapse rate was generally low. Pts with aggressive relapse showed a very poor long-term outcome while pts with indolent histology at relapse survived long-term. Secondary malignancies occurred; however, they were rare with no excess leukemias/MDS following treatment with very high doses of etoposide and other cytotoxic agents. Supported by Deutsche Krebshilfe. Figure Disclosures Nickelsen: Roche Pharma AG: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grants; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel Grant; Janssen: Membership on an entity's Board of Directors or advisory committees. Hänel:Amgen: Honoraria; Celgene: Other: advisory board; Novartis: Honoraria; Takeda: Other: advisory board; Roche: Honoraria. Truemper:Nordic Nanovector: Consultancy; Roche: Research Funding; Mundipharma: Research Funding; Janssen Oncology: Consultancy; Takeda: Consultancy, Research Funding; Seattle Genetics, Inc.: Research Funding. Held:Roche: Consultancy, Other: Travel support, Research Funding; Amgen: Research Funding; Acrotech: Research Funding; MSD: Consultancy; Bristol-Myers Squibb: Consultancy, Other: Travel support, Research Funding. Dreyling:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: scientific advisory board, Research Funding, Speakers Bureau; Bayer: Consultancy, Other: scientific advisory board, Speakers Bureau; Celgene: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Mundipharma: Consultancy, Research Funding; Gilead: Consultancy, Other: scientific advisory board, Speakers Bureau; Novartis: Other: scientific advisory board; Sandoz: Other: scientific advisory board; Janssen: Consultancy, Other: scientific advisory board, Research Funding, Speakers Bureau; Acerta: Other: scientific advisory board. Viardot:Kite/Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria; F. Hoffmann-La Roche Ltd: Honoraria, Membership on an entity's Board of Directors or advisory committees. Rosenwald:MorphoSys: Consultancy. Lenz:Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; AstraZeneca: Consultancy, Honoraria, Research Funding; Agios: Research Funding; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau; Bayer: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Research Funding, Speakers Bureau; Roche: Employment, Honoraria, Research Funding, Speakers Bureau; BMS: Consultancy. Schmitz:Novartis: Honoraria; Gilead: Honoraria; Celgene: Equity Ownership; Riemser: Consultancy, Honoraria.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 804-804 ◽  
Author(s):  
Mark Bustoros ◽  
Chia-jen Liu ◽  
Kaitlen Reyes ◽  
Kalvis Hornburg ◽  
Kathleen Guimond ◽  
...  

Abstract Background. This study aimed to determine the progression-free survival and response rate using early therapeutic intervention in patients with high-risk smoldering multiple myeloma (SMM) using the combination of ixazomib, lenalidomide, and dexamethasone. Methods. Patients enrolled on study met eligibility for high-risk SMM based on the newly defined criteria proposed by Rajkumar et al., Blood 2014. The treatment plan was designed to be administered on an outpatient basis where patients receive 9 cycles of induction therapy of ixazomib (4mg) at days 1, 8, and 15, in combination with lenalidomide (25mg) at days 1-21 and Dexamethasone at days 1, 8, 15, and 22. This induction phase is followed by ixazomib (4mg) and lenalidomide (15mg) maintenance for another 15 cycles. A treatment cycle is defined as 28 consecutive days, and therapy is administered for a total of 24 cycles total. Bone marrow samples from all patients were obtained before starting therapy for baseline assessment, whole exome sequencing (WES), and RNA sequencing of plasma and bone marrow microenvironment cells. Moreover, blood samples were obtained at screening and before each cycle to isolate cell-free DNA (cfDNA) and circulating tumor cells (CTCs). Stem cell collection is planned for all eligible patients. Results. In total, 26 of the planned 56 patients were enrolled in this study from February 2017 to April 2018. The median age of the patients enrolled was 63 years (range, 41 to 73) with 12 males (46.2%). Interphase fluorescence in situ hybridization (iFISH) was successful in 18 patients. High-risk cytogenetics (defined as the presence of t(4;14), 17p deletion, and 1q gain) were found in 11 patients (61.1%). The median number of cycles completed was 8 cycles (3-15). The most common toxicities were fatigue (69.6%), followed by rash (56.5%), and neutropenia (56.5%). The most common grade 3 adverse events were hypophosphatemia (13%), leukopenia (13%), and neutropenia (8.7%). One patient had grade 4 neutropenia during treatment. Additionally, grade 4 hyperglycemia occurred in another patient. As of this abstract date, the overall response rate (partial response or better) in participants who had at least 3 cycles of treatment was 89% (23/26), with 5 Complete Responses (CR, 19.2%), 9 very good partial responses (VGPR, 34.6%), 9 partial responses (34.6%), and 3 Minimal Responses (MR, 11.5%). None of the patients have shown progression to overt MM to date. Correlative studies including WES of plasma cells and single-cell RNA sequencing of the bone microenvironment cells are ongoing to identify the genomic and transcriptomic predictors for the differential response to therapy as well as for disease evolution. Furthermore, we are analyzing the cfDNA and CTCs of the patients at different time points to investigate their use in monitoring minimal residual disease and disease progression. Conclusion. The combination of ixazomib, lenalidomide, and dexamethasone is an effective and well-tolerated intervention in high-risk smoldering myeloma. The high response rate, convenient schedule with minimal toxicity observed to date are promising in this patient population at high risk of progression to symptomatic disease. Further studies and longer follow up for disease progression are warranted. Disclosures Bustoros: Dava Oncology: Honoraria. Munshi:OncoPep: Other: Board of director. Anderson:C4 Therapeutics: Equity Ownership; Celgene: Consultancy; Bristol Myers Squibb: Consultancy; Takeda Millennium: Consultancy; Gilead: Membership on an entity's Board of Directors or advisory committees; Oncopep: Equity Ownership. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding. Ghobrial:Celgene: Consultancy; Takeda: Consultancy; Janssen: Consultancy; BMS: Consultancy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2258-2258
Author(s):  
Tomer M Mark ◽  
Adriana C Rossi ◽  
Roger N Pearse ◽  
Morton Coleman ◽  
David Bernstein ◽  
...  

Abstract Abstract 2258 Background: Prior use of lenalidomide beyond 6 cycles of therapy in the treatment of multiple myeloma (MM) has been shown to negatively impact stem cell yield, but this phenomenon can be overcome with the addition of high-dose cyclophosphamide to standard G-CSF mobilization. We hypothesized that the use of plerixafor (Mozobil®) would compare similarly to chemotherapy in rescuing the ability to collect stem cells in lenalidomide-treated myeloma. Methods: We performed a retrospective study comparing the efficacy of plerixafor + G-CSF mobilization (PG) to chemotherapy + G-CSF (CG) (either high-dose cyclophosphamide at 3g/m2 or DCEP [4-day infusional dexamethasone/ cyclophosphamide/ etoposide/cisplatin]) in 49 consecutive stem cell collection attempts in patients with MM exposed to prior lenalidomide. The primary endpoint was the ability to collect sufficient stem cells for at least two transplants (minimum 5×106 CD34+ cells/kg), comparing results in terms of total exposure to lenalidomide and time elapsed from lenalidomide exposure until the mobilization attempt. The secondary endpoint was number of apheresis days required to meet collection goal. Resilts: Twenty-four patients underwent PG mobilization and twenty-five with CG (21 with G-CSF + cyclophosphamide, 4 with G-CSF+DCEP). The two groups did not differ in terms of total amount of lenalidomide exposure: median number of lenalidomide cycles for patients mobilized with PG was 6.5 (range 1.2–86.6), vs. 6 (range 2–21.6), for patients mobilized with CG (P = 0.663). The median time between mobilization and last lenalidomide dose was also similar between the two groups: 57.5 (range 12–462) days for PG vs. 154 (range 27–805) days for CG (P = 0.101). There was an equivalent rate of successful collection of 100% for PG and 96% for CG, P = 0.322. One patient failed collection in the CG group due to emergent hospitalization for septic shock during a period of neutropenia; no patient collected with PG had a serious adverse event that interrupted the collection process. Stem cell yield did not differ between the two arms (13.9 vs. 18.8 × 106 million CD34+ cells/kg for PG vs. CG respectively, P = 0.083). Average time to collection goal was also equal, with a median of time of 1 day required in both groups, (range 1–2 days for PG, 1–5 days for CG, P = 0.073). There was no relationship between amount of lenalidomide exposure and stem cell yield with either PG (P = 0.243) or CG (P = 0.867). Conclusion: A plerixafor + G-CSF mobilization schedule is equivalent in efficacy to chemotherapy + G-CSF in obtaining adequate numbers of stem cells for two autologous stem cell transplants in patients with MM exposed to lenalidomide; however, PG may be a less toxic approach than chemomobilization. Number of lenalidomide cycles has no impact on chances of stem cell collection success using either method. Disclosures: Mark: Celgene Corp: Speakers Bureau; Millenium Corp: Speakers Bureau. Zafar: Celgene Corp: Speakers Bureau. Niesvizky: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millenium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Onyx: Consultancy, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 723-723
Author(s):  
Shankara Anand ◽  
Mark Bustoros ◽  
Romanos Sklavenitis-Pistofidis ◽  
Robert A. Redd ◽  
Eileen M Boyle ◽  
...  

Abstract Introduction: Multiple Myeloma (MM) is an incurable plasma cell malignancy commonly preceded by the asymptomatic stage smoldering multiple myeloma (SMM). MM is characterized with significant genomic heterogeneity of chromosomal gains and losses (CNVs), translocations, and point mutations (SNVs); alterations that are also observed in SMM patients. However, current SMM risk models rely solely on clinical markers and do not accurately capture progression risk. While incorporating some genomic biomarkers improves prediction, using all MM genomic features to comprehensively stratify patients may increase risk stratification precision in SMM. Methods: We obtained a total of 214 patient samples at SMM diagnosis. We performed whole-exome sequencing on 166 tumors; of these, RNA sequencing was performed on 100. Targeted capture was done on 48 additional tumors. Upon binarization of DNA features, we performed consensus non-negative matrix factorization to identify distinct molecular clusters. We then trained a random forest classifier on translocations, SNVs, and CNVs. The predicted clinical outcomes for the molecular subtypes were further validated in an independent SMM cohort of 74 patients. Results: We identified six genomic subtypes, four with hyperdiploidy (&gt;48 chromosomes, HMC, HKR, HNT, HNF) and two with IgH translocations (FMD, CND) (Table 1). In multivariate analysis accounting for IMWG (20-2-20) clinical risk stages, high-risk (HMC, FMD, HKR) and intermediate-risk (HNT, HNF) genetic subtypes were independent predictors of progression (Hazards ratio [HR]: 3.8 and 5.5, P = 0.016 and 0.001, respectively). The low-risk, CND subtype harboring translocation (11;14) was enriched for the previously defined CD-2 MM signature defined by the B cell markers CD20 and CD79A (FDR = 0.003 ), showed upregulation of CCND1, E2F1, and E2F7 (FDR = 0.01, 0.0004, 0.08), and was enriched for G2M checkpoint, heme metabolism, and monocyte cell signature (FDR = 0.003, 0.003, 0.003, respectively). The FMD subtype with IgH translocations (4;14) and (14;16) was enriched for P53, mTORC1, unfolded protein signaling pathways and plasmacytoid dendritic cell signatures (FDR = 0.01, 0.005, 0.008, respectively). The HKR tumors were enriched for inflammatory cytokine signaling, MYC target genes, T regulatory cell signature, and the MM proliferative (PR) signatures (FDR = 0.02, 0.03, 0.007, 0.02, respectively). The APOBEC mutational signature was enriched in HMC and FMD tumors (P = 0.005), while there was no statistical difference across subtypes in the AID signature. The median follow-up for the primary cohort is 7.1 years. Median TTP for patients in HMC, FMD, and HKR was 3.8, 2.6, and 2.2 years, respectively; TTP for HNT and HNF was 4.3 and 5.2, respectively, while it was 11 years in CND patients (P = 0.007). Moreover, by analyzing the changes in MM clinical biomarkers over time, we found that patients from high-risk subgroups had higher odds of developing evolving hemoglobin and monoclonal protein levels over time (P = 0.01 and 0.002, respectively); Moreover, the absolute increase in M-protein was significantly higher in patients from the high-risk genetic subtypes at one, two, and five years from diagnosis (P = 0.001, 0.03, and 0,01, respectively). Applying the classifier to the external cohort replicated our findings where intermediate and high-risk genetic subgroups conferred increased risk of progression to MM in multivariate analysis after accounting for IMWG staging (HR: 5.5 and 9.8, P = 0.04 and 0.005, respectively). Interestingly, within the intermediate-risk clinical group in the primary cohort, patients in the high-risk genetic subgroups had increased risk of progression (HR: 5.2, 95% CI 1.5 - 17.3, P = 0.007). In the validation cohort, these patients also had an increased risk of progression to MM (HR: 6.7, 95% CI 1.2 - 38.3, P = 0.03), indicating that molecular classification improves the clinical risk-stratification models. Conclusion: We identified and validated in an independent dataset six SMM molecular subgroups with distinct DNA alterations, transcriptional profiles, dysregulated pathways, and risks of progression to active MM. Our results underscore the importance of molecular classification in addition to clinical evaluation in better identifying high-risk SMM patients. Moreover, these subgroups may be used to identify tumor vulnerabilities and target them with precision medicine efforts. Figure 1 Figure 1. Disclosures Bustoros: Janssen, Bristol Myers Squibb: Honoraria, Speakers Bureau; Takeda: Consultancy, Honoraria. Casneuf: Janssen: Current Employment. Kastritis: Amgen: Consultancy, Honoraria, Research Funding; Takeda: Honoraria; Pfizer: Consultancy, Honoraria, Research Funding; Genesis Pharma: Honoraria; Janssen: Consultancy, Honoraria, Research Funding. Walker: Bristol Myers Squibb: Research Funding; Sanofi: Speakers Bureau. Davies: Takeda: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria; BMS: Consultancy, Honoraria; Roche: Consultancy, Honoraria; Janssen: Consultancy, Honoraria. Dimopoulos: Amgen: Honoraria; BMS: Honoraria; Takeda: Honoraria; Beigene: Honoraria; Janssen: Honoraria. Bergsagel: Genetech: Consultancy, Honoraria; Oncopeptides: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Patents & Royalties: human CRBN mouse; GSK: Consultancy, Honoraria; Celgene: Consultancy, Honoraria. Yong: BMS: Research Funding; Autolus: Research Funding; Takeda: Honoraria; Janssen: Honoraria, Research Funding; Sanofi: Honoraria, Research Funding; GSK: Honoraria; Amgen: Honoraria. Morgan: BMS: Membership on an entity's Board of Directors or advisory committees; Jansen: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; GSK: Membership on an entity's Board of Directors or advisory committees. Getz: IBM, Pharmacyclics: Research Funding; Scorpion Therapeutics: Consultancy, Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees. Ghobrial: AbbVie, Adaptive, Aptitude Health, BMS, Cellectar, Curio Science, Genetch, Janssen, Janssen Central American and Caribbean, Karyopharm, Medscape, Oncopeptides, Sanofi, Takeda, The Binding Site, GNS, GSK: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document