scholarly journals Preliminary Clinical Results from a Phase 1 Study of ACTR707 in Combination with Rituximab in Subjects with Relapsed or Refractory CD20+ non-Hodgkin Lymphoma

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1587-1587
Author(s):  
Ian W. Flinn ◽  
Jason R. Westin ◽  
Jonathon B. Cohen ◽  
Luke P. Akard ◽  
Samantha Jaglowski ◽  
...  

Background: The Antibody-Coupled T-cell Receptor (ACTR) platform is an autologous engineered T-cell therapy that combines the cell-killing ability of T cells and the tumor-targeting ability of co-administered antibodies to exert potent antitumor immune responses. ACTR707 comprises the extracellular domain of CD16 linked to a CD3ζ signaling domain and a CD28 co-stimulatory domain. ACTR707 is in clinical development in combination with rituximab (NCT03189836) or trastuzumab (NCT03680560). Here we present clinical findings from the dose escalation phase of Study ATTCK-20-03, an ongoing, multicenter, phase 1 study of ACTR707+rituximab in subjects with relapsed or refractory (R/R) CD20+ NHL. Methods: The primary objectives of this first-in-human study are to evaluate the safety of the combination of ACTR707 and rituximab and to determine a recommended phase 2 dose (RP2D). Other objectives include evaluating antitumor activity and ACTR T-cell persistence. Subjects must have CD20+ NHL that is R/R after prior treatments, which must include anti-CD20 antibody-containing chemotherapy. Subjects receive lymphodepleting chemotherapy (cyclophosphamide and fludarabine) for 3 days, followed by rituximab and a single dose of ACTR707. Additional doses of rituximab are administered q3w until disease progression, unacceptable toxicity, or Investigator decision. The study includes a dose escalation phase (increasing doses of ACTR707 with fixed dose of rituximab at 375 mg/m2 q3w) and an expansion phase at the RP2D. Results: Six subjects received ACTR707 at Dose Level 1 (DL1; 23-38×106 ACTR+ T cells), 3 subjects at DL2 (30-50×106 ACTR+ T cells), and 5 subjects at DL3 (45-55×106 ACTR+ T cells). The majority of the subjects were diagnosed with DLBCL (93%) and had refractory disease (71%), defined as progressive disease as the best response to any prior treatment or relapse <1 year post autologous stem cell transplant. In DL1 through DL3, as of 27 May 2019, there were no dose-limiting toxicities, AEs of cytokine release syndrome (CRS), serious or severe neurologic AEs, or AEs leading to deaths on treatment. TEAEs reported in >2 subjects, regardless of causality or grade, included neutropenia, thrombocytopenia, anemia, febrile neutropenia, pyrexia, cough, constipation, diarrhea, nausea, and vomiting. SAEs considered possibly related to ACTR707 were febrile neutropenia (n=2) and cytopenia (n=1). ACTR707 expansion generally reached peak levels within 1 to 2 weeks after administration. All subjects with complete response (CR) up to 1 year had detectable ACTR at the last timepoint evaluated. Higher ACTR707 CD8:CD4 T-cell ratios were associated with clinical responses. Clinical activity was reported across DL1 through DL3, with an overall response rate of 64% including durable complete responses (CRs), with one subject in CR for 387+ days (Table 1). Conclusions: Data available from DL1 through DL3 of ACTR707+rituximab suggest that clinical responses can be achieved without severe T cell-mediated toxicities (eg, CRS and neurotoxicity) that have been reported with other autologous T-cell products. Dose escalation continues at a target dose of 80×106 ACTR+ T cells; enrollment in DL4 (n=6) was recently completed. Updated data, including identified correlates of clinical outcomes, will be presented for DL1 through DL4. Disclosures Flinn: TG Therapeutics, Trillum Therapeutics, Abbvie, ArQule, BeiGene, Curis, FORMA Therapeutics, Forty Seven, Merck, Pfizer, Takeda, Teva, Verastem, Gilead Sciences, Astra Zeneca (AZ), Juno Therapeutics, UnumTherapeutics, MorphoSys, AG: Research Funding; AbbVie, Seattle Genetics, TG Therapeutics, Verastem: Consultancy; TG Therapeutics, Trillum Therapeutics, Abbvie, ArQule, BeiGene, Curis, FORMA Therapeutics, Forty Seven, Merck, Pfizer, Takeda, Teva, Verastem, Gilead Sciences, Astra Zeneca (AZ), Juno Therapeutics, UnumTherapeutics, MorphoSys, AG: Research Funding; Acerta Pharma, Agios, Calithera Biosciences, Celgene, Constellation Pharmaceuticals, Genentech, Gilead Sciences, Incyte, Infinity Pharmaceuticals, Janssen, Karyopharm Therapeutics, Kite Pharma, Novartis, Pharmacyclics, Portola Pharmaceuticals: Research Funding; F. Hoffmann-La Roche Ltd: Research Funding. Westin:Genentech: Other: Advisory Board, Research Funding; Janssen: Other: Advisory Board, Research Funding; Kite: Other: Advisory Board, Research Funding; Unum: Research Funding; Curis: Other: Advisory Board, Research Funding; Juno: Other: Advisory Board; MorphoSys: Other: Advisory Board; 47 Inc: Research Funding; Celgene: Other: Advisory Board, Research Funding; Novartis: Other: Advisory Board, Research Funding. Cohen:Genentech, Inc.: Consultancy, Research Funding; Takeda Pharmaceuticals North America, Inc.: Research Funding; Gilead/Kite: Consultancy; LAM Therapeutics: Research Funding; UNUM: Research Funding; Hutchison: Research Funding; Astra Zeneca: Research Funding; Lymphoma Research Foundation: Research Funding; ASH: Research Funding; Bristol-Meyers Squibb Company: Research Funding; Seattle Genetics, Inc.: Consultancy, Research Funding; Janssen Pharmaceuticals: Consultancy. Akard:Celgene: Speakers Bureau; Novartis: Speakers Bureau; Takeda: Speakers Bureau; Bristol-Myers Squibb: Speakers Bureau; Gilead: Speakers Bureau. Jaglowski:Juno: Consultancy, Other: advisory board; Kite: Consultancy, Other: advisory board, Research Funding; Unum Therapeutics Inc.: Research Funding; Novartis: Consultancy, Other: advisory board, Research Funding. Sachs:Unum Therapeutics Inc.: Employment. Ranger:Unum Therapeutics Inc.: Employment. Harris:Unum Therapeutics Inc.: Employment. Payumo:Unum Therapeutics Inc.: Employment. Bachanova:Celgene: Research Funding; Gamida Cell: Research Funding; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees; GT Biopharma: Research Funding; Kite: Membership on an entity's Board of Directors or advisory committees; Incyte: Research Funding; Novartis: Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 244-244
Author(s):  
Javier Munoz ◽  
Samantha Jaglowski ◽  
Matthew S. McKinney ◽  
Iris Isufi ◽  
Patrick J. Stiff ◽  
...  

Background: The Antibody-Coupled T-cell Receptor (ACTR) platform is an autologous engineered T-cell therapy that combines the cell-killing ability of T cells and the tumor-targeting ability of co-administered antibodies to exert potent antitumor immune responses. ACTR087 comprises the extracellular domain of CD16 linked to a CD3ζ-signaling domain and a 4-1BB co-stimulatory domain. Here we present the clinical experience from Study ATTCK-20-2 (NCT02776813), a multicenter, phase 1 study of ACTR087 in combination with rituximab in subjects with relapsed or refractory (R/R) CD20+ NHL. Methods: The main objectives of this first-in-human study were to evaluate the safety and antitumor activity of ACTR087+rituximab. Other objectives included evaluating ACTR T-cell persistence and other correlative biomarkers. Subjects must have had CD20+ NHL that was R/R after prior treatments, which must have included anti-CD20 antibody-containing chemotherapy. Subjects received lymphodepleting chemotherapy (cyclophosphamide and fludarabine) for 3 days, followed by rituximab and a single dose of ACTR087. Additional doses of rituximab were administered q3w until disease progression, unacceptable toxicity, or Investigator decision. The study included a dose escalation phase (increasing doses of ACTR087) and an expansion phase (ACTR087 at the preliminary recommended phase 2 dose [RP2D]); all subjects received rituximab at a fixed dose of 375 mg/m2 q3w. Results: Two dose levels (DL) of ACTR087 were evaluated during dose escalation (n=17). The MTD was exceeded at DL2, with severe cases of cytokine release syndrome (CRS) and neurotoxicity. Statistical analysis of the relationship between non-hematologic toxicity and ACTR+ T-cell doses was retrospectively performed (two-parameter Bayesian logistic regression model) to estimate an RP2D of 35×106 ACTR+ T cells. Nine subjects enrolled in an expansion cohort and received ACTR087 at this RP2D in combination with rituximab. Among all subjects treated (n=26), the majority (69%) were diagnosed with DLBCL. Subjects had received a median of 3 (range 1-9) prior lines of therapy, with 77% having received ≥3 prior lines. ACTR087 showed dose-dependent expansion with peak levels generally observed 7 to 14 days post administration. In subjects with ongoing clinical response (CR), ACTR remained detectable through the last timepoint evaluated. Across all cohorts, Grade ≥3 TEAEs reported in >3 subjects regardless of causality were limited to hematologic events. Potential T cell-mediated toxicities were observed, including 4 serious cases of CRS (Gr 4 in 2 subjects, both with fatal sepsis) and 2 serious cases of neurotoxicity (1 Gr 5, 1 Gr 4 in a subject with fatal septic shock). Elevated baseline inflammatory markers (eg, ferritin, CRP) were observed in patients who developed Gr ≥3 CRS and neurotoxicity post ACTR087. Of note, severe CRS presented without fever and events occurred >7 days post ACTR087. Clinical activity was reported with an ORR of 50% in all dose levels tested, including durable complete responses, with one subject in CR for 869+ days (Table 1). Conclusions: ACTR087+rituximab demonstrated antitumor activity, with observed safety events that are expected with other autologous T-cell products. The time to onset and clinical presentation of severe CRS and neurotoxicity events in this study informed the safety monitoring and adverse reaction management guidance across clinical studies of ACTR T-cell products. Data from this first-in-human study of ACTR087+rituximab confirm the proof of concept and will be used to guide further development for the ACTR platform. Updated clinical data, as well as expanded biomarker correlations to efficacy and safety, will be presented. Disclosures Munoz: Pharmacyclics /Janssen: Consultancy, Research Funding, Speakers Bureau; Pfizer: Consultancy; Fosunkite: Speakers Bureau; AstraZeneca: Speakers Bureau; Kyowa: Consultancy, Honoraria, Speakers Bureau; Seattle Genetics: Consultancy, Honoraria, Research Funding, Speakers Bureau; Celgene/Juno: Consultancy, Research Funding; Genentech: Consultancy, Research Funding, Speakers Bureau; Kite/Gilead: Consultancy, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Consultancy; Alexion: Consultancy; Portola: Research Funding; Incyte: Research Funding; Bayer: Consultancy, Speakers Bureau; Merck: Consultancy. Jaglowski:Kite: Consultancy, Other: advisory board, Research Funding; Novartis: Consultancy, Other: advisory board, Research Funding; Unum Therapeutics Inc.: Research Funding; Juno: Consultancy, Other: advisory board. Isufi:Celgene: Consultancy; Novartis: Consultancy; Astra Zeneca: Consultancy. Stiff:Gamida-Cell: Research Funding; Incyte: Research Funding; Cellectar: Research Funding; Unum: Research Funding; Gilead/Kite Pharma: Consultancy, Honoraria, Research Funding; Amgen: Research Funding. Sachs:Unum Therapeutics Inc.: Employment. Ranger:Unum Therapeutics Inc.: Employment. Harris:Unum Therapeutics Inc.: Employment. Payumo:Unum Therapeutics Inc.: Employment. Akard:Bristol-Myers Squibb: Speakers Bureau; Gilead: Speakers Bureau; Takeda: Speakers Bureau; Novartis: Speakers Bureau; Celgene: Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 779-779 ◽  
Author(s):  
Zinaida Good ◽  
Jay Y. Spiegel ◽  
Bita Sahaf ◽  
Meena B. Malipatlolla ◽  
Matthew J. Frank ◽  
...  

Axicabtagene ciloleucel (Axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved for the treatment of relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL). Long-term analysis of the ZUMA-1 phase 1-2 clinical trial showed that ~40% of Axi-cel patients remained progression-free at 2 years (Locke et al., Lancet Oncology 2019). Those patients who achieved a complete response (CR) at 6 months generally remained progression-free long-term. The biological basis for achieving a durable CR in patients receiving Axi-cel remains poorly understood. Here, we sought to identify CAR T-cell intrinsic features associated with CR at 6 months in DLBCL patients receiving commercial Axi-cel at our institution. Using mass cytometry, we assessed expression of 33 surface or intracellular proteins relevant to T-cell function on blood collected before CAR T cell infusion, on day 7 (peak expansion), and on day 21 (late expansion) post-infusion. To identify cell features that distinguish patients with durable CR (n = 11) from those who developed progressive disease (PD, n = 14) by 6 months following Axi-cel infusion, we performed differential abundance analysis of multiparametric protein expression on CAR T cells. This unsupervised analysis identified populations on day 7 associated with persistent CR or PD at 6 months. Using 10-fold cross-validation, we next fitted a least absolute shrinkage and selection operator (lasso) model that identified two clusters of CD4+ CAR T cells on day 7 as potentially predictive of clinical outcome. The first cluster identified by our model was associated with CR at 6 months and had high expression of CD45RO, CD57, PD1, and T-bet transcription factor. Analysis of protein co-expression in this cluster enabled us to define a simple gating scheme based on high expression of CD57 and T-bet, which captured a population of CD4+ CAR T cells on day 7 with greater expansion in patients experiencing a durable CR (mean±s.e.m. CR: 26.13%±2.59%, PD: 10.99%±2.53%, P = 0.0014). In contrast, the second cluster was associated with PD at 6 months and had high expression of CD25, TIGIT, and Helios transcription factor with no CD57. A CD57-negative Helios-positive gate captured a population of CD4+ CAR T cells was enriched on day 7 in patients who experienced progression (CR: 9.75%±2.70%, PD: 20.93%±3.70%, P = 0.016). Co-expression of CD4, CD25, and Helios on these CAR T cells highlights their similarity to regulatory T cells, which could provide a basis for their detrimental effects. In this exploratory analysis of 25 patients treated with Axi-cel, we identified two populations of CD4+ CAR T cells on day 7 that were highly associated with clinical outcome at 6 months. Ongoing analyses are underway to fully characterize this dataset, to explore the biological activity of the populations identified, and to assess the presence of other populations that may be associated with CAR-T expansion or neurotoxicity. This work demonstrates how multidimensional correlative studies can enhance our understanding of CAR T-cell biology and uncover populations associated with clinical outcome in CAR T cell therapies. This work was supported by the Parker Institute for Cancer Immunotherapy. Figure Disclosures Muffly: Pfizer: Consultancy; Adaptive: Research Funding; KITE: Consultancy. Miklos:Celgene: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Kite-Gilead: Membership on an entity's Board of Directors or advisory committees, Research Funding; AlloGene: Membership on an entity's Board of Directors or advisory committees; Precision Bioscience: Membership on an entity's Board of Directors or advisory committees; Miltenyi Biotech: Membership on an entity's Board of Directors or advisory committees; Becton Dickinson: Research Funding; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees. Mackall:Vor: Other: Scientific Advisory Board; Roche: Other: Scientific Advisory Board; Adaptimmune LLC: Other: Scientific Advisory Board; Glaxo-Smith-Kline: Other: Scientific Advisory Board; Allogene: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Apricity Health: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Unum Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Obsidian: Research Funding; Lyell: Consultancy, Equity Ownership, Other: Founder, Research Funding; Nektar: Other: Scientific Advisory Board; PACT: Other: Scientific Advisory Board; Bryologyx: Other: Scientific Advisory Board.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2831-2831 ◽  
Author(s):  
Swaminathan P. Iyer ◽  
Brad M. Haverkos ◽  
Jasmine Zain ◽  
Radhakrishnan Ramchandren ◽  
Mary Jo Lechowicz ◽  
...  

Introduction: Tenalisib (RP6530) is a novel, highly specific, dual PI3K δ/γ inhibitor with nano-molar inhibitory potency at the enzyme and cellular level. PI3K plays a critical role in T-cell development and activation and several studies have validated the PI3K-AKT pathway as a potential therapeutic target in T cell lymphomas. Preliminary results of the ongoing Phase 1/1b T-cell lymphoma (TCL) study demonstrated an acceptable safety profile with encouraging clinical activity in relapsed/refractory TCL (Oki, ASCO 2018 and Iyer, ASH 2018). We now present the final results of the study (NCT02567656). Methods: This study comprised of four-dose escalation cohorts, followed by two dose expansion cohorts at MTD enrolling 20 patients each in PTCL and CTCL cohorts. Patients had histologically confirmed TCL, ECOG PS ≤2, and had received ≥1 prior therapy. Patients received Tenalisib [200 mg BID-800 mg BID (fasting), 800 mg (fed only)] orally until progression or unacceptable toxicity. The primary objectives were to determine the MTD and pharmacokinetic profile. The secondary objective was to evaluate overall response rate (ORR) and duration of response. Responses were evaluated for PTCL and CTCL based on IWG criteria (Cheson 2007) and mSWAT respectively. Adverse events were graded according to CTCAE v4.03. Results: Fifty-eight patients were enrolled in study, 19 in dose escalation and 39 in dose expansion (28 PTCL and 30 CTCL). Median number of prior therapies was 4 (range, 1-15). Safety assessment of 58 patients receiving at least one dose of Tenalisib demonstrated an acceptable safety profile. Treatment related Grade≥3 AEs were elevated ALT/AST (21%), rash (5%), and hypophosphatemia (3%). These events were reversible and managed by withholding study drug. Additionally, in few patients (N=9), steroids were used to manage elevated ALT/AST. There were six treatment related serious adverse events, none of these led to fatal outcome. At end of the study, four (3 CTCL; 1 PTCL) patients who completed minimum 8 cycles of therapy were rolled over to a compassionate use study (NCT03711604) and were followed up. Efficacy assessments demonstrated an ORR of 46% (3 CR and 13 PR) and clinical benefit rate (CR+PR+SD) of 77%. Subset efficacy analysis showed an ORR in PTCL of 47% (3 CR; 4 PR) and in CTCL of 45% (9 PR). The median time to initial response was 1.8 months and was similar in both sub-types. The overall median DOR was 4.91 months (range 0.9-26.6); in PTCL patients the DOR was 6.53 months, (range: 0.97-21.0) and 3.8 months (range: 1.67-25.67) in CTCL patients. In 3 PTCL patients who achieved CR, the median DOR was 19.5 months (range 7.5-21). Conclusion: Tenalisib demonstrated promising clinical activity and an improved safety profile in patients with relapsed/ refractory TCL. Currently, a phase I/II combination study to further evaluate safety and efficacy with romidepsin is ongoing in this target population. Disclosures Iyer: Arog: Research Funding; Bristol-Myers Squibb: Research Funding; Novartis: Research Funding; Seattle Genetics, Inc.: Research Funding; Genentech/Roche: Research Funding; Incyte: Research Funding. Zain:Spectrum: Consultancy; Seattle Genetics: Consultancy. Korman:Genentech: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Glaxo: Honoraria, Membership on an entity's Board of Directors or advisory committees; Immune Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Kyowa: Research Funding; Leo: Research Funding; Menlo: Research Funding; Merck: Research Funding; Novartis: Consultancy, Honoraria, Speakers Bureau; Pfizer: Research Funding; Principia: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Prothena: Research Funding; Regeneron: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Rhizen: Research Funding; Sun: Honoraria, Membership on an entity's Board of Directors or advisory committees; Syntimmune: Research Funding; UCB: Research Funding; Valeant: Honoraria, Membership on an entity's Board of Directors or advisory committees; Eli Lilly: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Dermira: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Routhu:Rhizen Pharmaceuticals S.A.: Employment. Barde:Rhizen Pharmaceuticals S.A.: Employment. Nair:Rhizen Pharmaceuticals S.A.: Employment. Huen:Galderma Inc: Research Funding; Glaxo Smith Kline Inc: Research Funding; Rhizen Pharmaceuticals: Research Funding; Innate Pharmaceuticals: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 23-24
Author(s):  
Ahmed Aribi ◽  
Anjali S Advani ◽  
William Donnellan ◽  
Amir T. Fathi ◽  
Marcello Rotta ◽  
...  

Background SEA-CD70 is being developed in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Current treatment options are limited for patients (pts) with relapsed or refractory (r/r) MDS or r/r AML and outcomes remain poor. SEA-CD70 is an investigational humanized, non-fucosylated monoclonal antibody targeting CD70. Expression of CD70 is limited in normal tissue, but is aberrantly expressed on malignant myeloid blasts while absent from healthy hematopoietic progenitor cells. CD70 and its ligand, CD27, may play a role in malignant blast cell survival and/or tumor immune evasion. SEA-CD70 uses a novel sugar-engineered antibody (SEA) platform to produce a non-fucosylated antibody with enhanced effector function. The proposed mechanism of action of SEA-CD70 includes elimination of CD70 positive cells via enhanced antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and mediation of complement-dependent cytoxicity (CDC). Additionally, SEA-CD70 has the potential to block the interaction of CD70 with CD27, which may disrupt signals that enhance blast proliferation and survival and may modulate the immune system to limit immune evasion and increase antigen specific T cell responses. Methods SGNS70-101 is a phase 1, open-label, multicenter, dose-escalation, and cohort expansion study designed to establish the safety, tolerability, and preliminary activity of SEA-CD70 in pts with myeloid malignancies (NCT04227847). Dose escalation is ongoing. In dose escalation, pts must have r/r MDS with 5-20% blasts which has failed prior treatment with a hypomethylating agent (HMA), and have no other therapeutic options known to provide clinical benefit for MDS. After conclusion of dose escalation, monotherapy expansion cohorts will be opened for pts with MDS and for pts with AML. Primary objectives are to evaluate the safety and tolerability, and to determine the maximum tolerated dose (MTD) or recommended expansion dose of SEA-CD70. Secondary objectives are to assess antitumor activity, PK, and immunogenicity of SEA-CD70. Once dose escalation is complete and the recommended monotherapy dose is identified, combination cohorts will be considered in AML and MDS. The study is currently enrolling with sites opening in the US and EU. Disclosures Aribi: Seattle Genetics: Consultancy. Advani:OBI: Research Funding; Takeda: Research Funding; Novartis: Consultancy, Other: advisory board; Pfizer: Honoraria, Research Funding; Kite: Other: Advisory board/ honoraria; Amgen: Consultancy, Other: steering committee/ honoraria, Research Funding; Seattle Genetics: Other: Advisory board/ honoraria, Research Funding; Immunogen: Research Funding; Glycomimetics: Consultancy, Other: Steering committee/ honoraria, Research Funding; Macrogenics: Research Funding; Abbvie: Research Funding. Donnellan:Kite Pharma/Gilead: Research Funding; Janssen: Research Funding; Karyopharm Therapeutics: Research Funding; AstraZeneca: Research Funding; Astex Pharmaceuticals: Research Funding; Incyte: Research Funding; MedImmune: Research Funding; TCR2 Therapeutics: Research Funding; Genentech: Research Funding; PTC Therapeutics: Consultancy, Research Funding; Pfizer: Research Funding; Daiichi Sankyo: Research Funding; Bristol-Myers Squibb: Research Funding; Amgen: Consultancy; Abbvie: Consultancy, Research Funding; Bellicum Pharmaceuticals: Research Funding; CTI Biopharma: Research Funding; Celgene: Research Funding; Celularity: Research Funding; Forma Therapeutics: Research Funding; Forty Seven: Research Funding; Takeda: Research Funding; H3 Biomedicine: Research Funding; Ryvu Therapeutics: Research Funding; Seattle Genetics: Consultancy, Research Funding. Fathi:Astellas: Consultancy; Agios: Consultancy, Research Funding; Amphivena: Consultancy, Honoraria; AbbVie: Consultancy; Pfizer: Consultancy; Daiichi Sankyo: Consultancy; Celgene: Consultancy, Research Funding; Forty Seven: Consultancy; Jazz: Consultancy, Honoraria; Kite: Consultancy, Honoraria; NewLink Genetics: Consultancy, Honoraria; Novartis: Consultancy; PTC Therapeutics: Consultancy; Takeda: Consultancy; TrovaGene: Consultancy; Amgen: Consultancy; Bristol-Myers Squibb: Consultancy, Research Funding; Blue Print Oncology: Consultancy; Boston Biomedical: Consultancy; Kura: Consultancy; Trillium: Consultancy; Seattle Genetics: Consultancy, Research Funding. Rotta:Merck: Speakers Bureau; Jazz Pharma: Speakers Bureau. Vachani:Blueprint: Consultancy; CTI Biopharma: Consultancy; Daiichi Sankyo: Consultancy; Incyte: Consultancy, Research Funding; Jazz: Consultancy; Astellas: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees; Agios: Consultancy; Abbvie: Consultancy. Yang:AROG: Research Funding; Protagonist: Research Funding; Jannsen: Research Funding; AstraZeneca: Research Funding. Ho:Seattle Genetics: Current Employment, Current equity holder in publicly-traded company. Garcia-Manero:Novartis: Research Funding; Helsinn Therapeutics: Consultancy, Honoraria, Research Funding; Merck: Research Funding; Jazz Pharmaceuticals: Consultancy; Onconova: Research Funding; Amphivena Therapeutics: Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Acceleron Pharmaceuticals: Consultancy, Honoraria; AbbVie: Honoraria, Research Funding; Astex Pharmaceuticals: Consultancy, Honoraria, Research Funding; Bristol-Myers Squibb: Consultancy, Research Funding; H3 Biomedicine: Research Funding; Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4819-4819
Author(s):  
Monzr M. Al Malki ◽  
Sumithira Vasu ◽  
Dipenkumar Modi ◽  
Miguel-Angel Perales ◽  
Lucy Y Ghoda ◽  
...  

Abstract Patients who relapse after allogeneic HCT have a poor prognosis and few effective treatment options. Responses to salvage therapy with donor lymphocyte infusions (DLI) are driven by a graft versus leukemia (GvL) effect. However, relapses and moderate to severe graft versus host disease (GVHD) are common. Therapies that increase the GvL effect without inducing GVHD are needed. The NEXI-001 study is a prospective, multicenter, open-label phase 1/2 trial designed to characterize the safety, immunogenic, and antitumor activity of the NEXI-001 antigen specific T-cell product. This product is a donor-derived non-genetically engineered therapy that consists of populations of CD8+ T cells that recognize HLA 02.01-restricted peptides from the WT1, PRAME, and Cyclin A1 antigens. These T cells consist of populations with key memory phenotypes, including stem-like memory, central memory, and effector memory cells, with a low proportion (<5%) of potentially allogeneic-reactive T-naïve cells. Patients enrolled into the first cohort of the dose escalation phase received a single infusion of 50 million (M) to 100M cells of the NEXI-001 product. Bridging anti-AML treatment was permitted during the manufacture of the cellular product with a wash-out period of at least 14 days prior to lymphodepletion (LD) chemotherapy (intravenous fludarabine 30 mg/m 2 and cyclophosphamide 300 mg/m 2) that was administered on Days -5, -4, and -3 prior to the infusion of the NEXI-001 product up to 72 hours later (Day1). Lymphocyte recovery to baseline levels occurred as early as three days after the NEXI-001 product infusion with robust CD4 and CD8 T cell reconstitution after LD chemotherapy. NEXI-001 antigen specific T cells were detectable in peripheral blood (PB) by multimer staining and were found to proliferate over time and to traffic to bone marrow. The phenotype composition of detectable antigen specific T cells at both sites was that of the infused product. T-cell receptor (TCR) sequencing assays revealed T cell clones in the NEXI-001 product that were not detected in PB of patients tested at baseline. These unique clones subsequently expanded in PB and bone marrow (BM) and persisted over time. Neutrophil recovery, decreased transfusion burden of platelets and red blood cells, and increased donor chimerism were observed. Decreases in myeloblasts and reduction in the size of an extramedullary myeloid sarcoma were suggestive of clinical activity. One patient, a 23-year- old with MRD+ disease at baseline, received two doses of 200M NEXI-001 cells separated by approximately 2 months. Following the first infusion, antigen specific CD8+ T cells increased gradually in PB to 9% of the total CD3+ T cell population just prior to the second infusion and were found to have trafficked to bone marrow. By Day 2 following the second infusion, which was not preceded by LD chemotherapy, the antigen specific CD8+ T cells again increased to 9% of the total CD3+ T cell population in PB and remained at ≥5% until the end of study visit a month later. The absolute lymphocyte count increased by 50% highlighting continued expansion of the NEXI-001 T cells. These cells also maintained significant Tscm populations. Treatment related adverse events, including infusion reactions, GVHD, CRS, and neurotoxicity (ICANS), have not developed in these patients who have received 50M to 200M T cells of the NEXI-001 product either as single or repeat infusions. In conclusion, these results show that infusion of the NEXI-001 product is safe and capable of generating a cell-mediated immune response with early signs of clinical activity. A second infusion is associated with increasing the level of antigen specific CD8+ T cells and their persistence in PB and BM. TCR sequencing and RNA Seq transcriptional profiling of the CD8+ T cells are planned, and these data will be available for presentation during the ASH conference. At least two cycles of 200M NEXI-001 cells weekly x 3 weeks of a 4-week cycle is planned for the next dose-escalation cohort. Early data suggest that the NEXI-001 product has the potential to enhance a GvL effect with minimal GVHD-associated toxicities. Disclosures Al Malki: Jazz Pharmaceuticals, Inc.: Consultancy; Neximmune: Consultancy; Hansa Biopharma: Consultancy; CareDx: Consultancy; Rigel Pharma: Consultancy. Vasu: Boehringer Ingelheim: Other: Travel support; Seattle Genetics: Other: travel support; Kiadis, Inc.: Research Funding; Omeros, Inc.: Membership on an entity's Board of Directors or advisory committees. Modi: MorphoSys: Membership on an entity's Board of Directors or advisory committees; Seagen: Membership on an entity's Board of Directors or advisory committees; Genentech: Research Funding. Perales: Sellas Life Sciences: Honoraria; Novartis: Honoraria, Other; Omeros: Honoraria; Merck: Honoraria; Takeda: Honoraria; Karyopharm: Honoraria; Incyte: Honoraria, Other; Equilium: Honoraria; MorphoSys: Honoraria; Kite/Gilead: Honoraria, Other; Bristol-Myers Squibb: Honoraria; Celgene: Honoraria; Medigene: Honoraria; NexImmune: Honoraria; Cidara: Honoraria; Nektar Therapeutics: Honoraria, Other; Servier: Honoraria; Miltenyi Biotec: Honoraria, Other. Edavana: Neximmune, Inc: Current Employment. Lu: Neximmune, Inc: Current Employment. Kim: Neximmune, Inc: Current Employment. Suarez: Neximmune, Inc: Current Employment. Oelke: Neximmune, Inc: Current Employment. Bednarik: Neximmune, Inc: Current Employment. Knight: Neximmune, Inc: Current Employment. Varela: Kite: Speakers Bureau; Nexlmmune: Current equity holder in publicly-traded company, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 392-392 ◽  
Author(s):  
Shira Orr ◽  
Marzia Capelletti ◽  
Haider Ghiasuddin ◽  
Dina Stroopinsky ◽  
Jessica Liegel ◽  
...  

Introduction: We have pioneered a personalized cancer vaccine in which patient derived tumor cells are fused with autologous dendritic cells (DCs) such that a broad array of shared and neo-tumor antigens is presented in the context of DC mediated co-stimulation, limiting the risk of antigen escape. In clinical trials of patients with hematologic malignancies, vaccination with DC/tumor fusions induced an expansion of tumor-specific T cells, and resulted in prolonged remissions in a subset of patients. In the current study, we have developed a novel second generation vaccine, whereby a DC/lymphoma fusion vaccine is presented in the context of a unique biomatrix that expresses high levels of the 41BB costimulatory molecule, to further accentuate T cell activation and prevent the establishment of tumor tolerance. In this study, we demonstrate efficacy of DC/lymphoma fusion cell vaccination in a preclinical lymphoma model, and show enhanced potency of the second-generation vaccine. Methods/Results: We first demonstrated the potency of the DC/tumor fusion vaccine in generating anti-tumor immunity in the A20 lymphoma model. Murine DC/A20 fusions were generated from bone marrow derived mononuclear cells cultured with GM-CSF and IL-4 then fused to syngeneic A20 lymphoma cells. DC/A20 fusion cells effectively induced tumor specific immunity as manifested by potent lysis of A20 T cells in vitro as compared to unstimulated T cells in a standard CTL assay. Consistent with this observation, vaccination with DC/A20 fusions effectively induced lymphoma specific immunity in an immunocompetent murine model. Balb/C mice (30 animals) underwent IV inoculation with 750,000 syngeneic, luciferase and mCherry transduced, A20 cells. 24 hours after tumor cells challenge, 15 mice were treated subcutaneously with 105 DC/A20 fusions. Tumor burden was detected using BLI imaging. 10 days post inoculation, within the untreated cohort all 15/15 mice had detectable tumor whereas within the treated group, 5 mice did not demonstrate any evidence of disease and 5 mice demonstrated minimal disease. We subsequently demonstrated that patient derived autologous DC/lymphoma fusions stimulated T cell mediated lysis of primary lymphoma cells. DC were generated from patient derived peripheral blood mononuclear cells cultured with GM-CSF and IL-4 and matured with TNFa. Primary lymphoma cells were isolated from resected tumor and fused with DC at a ratio of 10:1. Fusion stimulated T cells potently lysed autologous tumor cells as compared to unstimulated T cells (25.7% as compared to 12.66%) in a standard CTL assay. To further enhance vaccine potency, we developed a biomatrix substrate expressing the costimulatory molecule 41BB. Using carbodiimide chemistry we covalently bonded RGD peptide and 41BBL protein to an alginate (Alg)-based scaffold. The Alg/RGD/41BBL scaffold can serve as a supporting microenvironment for the co-culture of T cells and fusion vaccine. We cultured syngeneic T cells with DC/A20 fusion vaccine within a scaffold with or without bound 41BBL and examined the T cells cytotoxicity by a CTL assay as described above. Vaccine mediated stimulation of T cells in the context of the Alg/RGD/41BBL scaffold demonstrated higher levels of tumor lysis as compared to the percent T cells cultured within an Alg/RGD scaffold (22.95% and 13.95% respectively). Conclusion: In the current study we assessed the efficacy of the DC/Lymphoma fusion vaccine to elicit a tumor specific immune response. We succeeded in demonstrating the capacity of DC/Lymphoma fusion vaccine to generate tumor specific T cell cytotoxicity in vitro as well as in vivo in an immunocompetent murine model. Accordingly, we presented patient derived primary tumor results supporting the applicable nature of the DC/Lymphoma vaccine in lymphoma patients. In addition, we developed a second-generation fusion vaccine comprised of the original DC/Tumor vaccine presented to the T cells in an Alg/RGD/41BBL scaffold acting as a nurturing microenvironment for T cell immune specific response against the tumor cells. Our initial results exhibit promising potential and an in vivo experiment with the second-generation fusion vaccine is ongoing. Disclosures Arnason: Celgene/Juno: Consultancy; Regeneron Pharmaceuticals, Inc.: Consultancy. Kufe:Nanogen Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Genus Oncology: Equity Ownership; Reata Pharmaceuticals: Consultancy, Equity Ownership, Honoraria; Hillstream BioPharma: Equity Ownership; Victa BioTherapeutics: Consultancy, Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees; Canbas: Consultancy, Honoraria. Rosenblatt:Dava Oncology: Other: Education; BMS: Research Funding; Partner Tx: Other: Advisory Board; Merck: Other: Advisory Board; Parexel: Consultancy; Imaging Endpoint: Consultancy; Celgene: Research Funding; BMS: Other: Advisory Board ; Amgen: Other: Advisory Board. Avigan:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees; Partners Tx: Membership on an entity's Board of Directors or advisory committees; Partner Tx: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy; Parexel: Consultancy; Takeda: Consultancy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2737-2737 ◽  
Author(s):  
Naokuni Uike ◽  
Michinora Ogura ◽  
Yoshitaka Imaizumi ◽  
Norio Asou ◽  
Atae Utsunomiya ◽  
...  

Abstract Abstract 2737 Introduction: ATL is prevalent in Japan and has the worst prognosis among T-cell malignancies. PTCL also has a poor prognosis with currently available chemotherapeutic regimens, and both would benefit from better treatment modality. Lenalidomide is an immunomodulatory agent with direct tumoricidal and antiproliferative activity, and is approved for multiple myeloma (MM) in combination with dexamethasone after at least 1 prior therapy and for transfusion-dependent anemia due to low- or intermediate-1-risk myelodysplastic syndromes associated with 5q deletion. We conducted a phase 1 study of lenalidomide in patients with relapsed ATL or PTCL to establish the recommended dose and schedule for a subsequent phase 2 study. Patients and Methods: This multicenter, phase 1, dose-escalation study assessed the safety, maximum tolerated dose (MTD), pharmacokinetics, and efficacy in patients with relapsed advanced ATL or PTCL. Dose-escalation was conducted according to the standard 3+3 design. Up to one PTCL patient was allowed to be included in each cohort of 3 patients. Patients in Cohort 1 received oral lenalidomide 25 mg daily on Days 1–21 of a 28-day cycle. Patients in Cohorts 2 and 3 received 25 and 35 mg/day, respectively, on each day of the 28-day cycle. Dose-limiting toxicity (DLT) was defined as febrile neutropenia lasting 5 or more days; thrombocytopenia (platelets <10,000/uL or bleeding requiring platelet transfusion); ALT/AST elevation of Grade 4 or that of Grade 3 lasting 7 or more days; and/or clinically unacceptable Grade 3 or higher other non-hematological adverse events (AEs). Treatment was continued until the development of unacceptable toxicity or progressive disease (PD). Response was assessed by internationally accepted standard criteria for ATL and PTCL. Results: From July 2010–June 2012, 13 Japanese patients (9 ATL and 4 PTCL; age 32–74 years [median, 64]; 1–11 prior therapies [median, 1]) were enrolled: 3 in Cohort 1, 6 in Cohort 2, and 4 in Cohort 3. The 3 patients in Cohort 1 received lenalidomide for 21, 103, and 637 days, respectively, until PD with no instances of DLT. In Cohort 2, 1 patient experienced DLT (thrombocytopenia, platelets <10,000/uL) and 4 patients received lenalidomide for 37, 56, 138, and 387 days, respectively, until PD in 3 patients and unrelated death in one. The sixth patient is still receiving lenalidomide for 28+ days without a DLT. In Cohort 3, 2 patients had DLTs (thrombocytopenia, platelets <10,000/uL in one patient and Grade 3 prolongation of QTc interval in one patient on concomitant fluconazole with preexisting cardiac disease and grade 1 QTc prolongation at baseline), 1 patient received lenalidomide for 71 days before withdrawal of consent, and 1 patient is still receiving lenalidomide for 323+ days without a DLT. Based on these results, 25 mg daily per 28-day cycle was regarded as the MTD. Other Grade 3/4 non-DLT AEs occurring in 2 or more patients included neutropenia (n=8), lymphocytopenia (n=7), thrombocytopenia (n=3), skin rash (n=3), hyperbilirubinemia (n=2), and increased ALT/AST (n=2). Among the 9 ATL patients, 3 achieved partial responses (PR) with hematological complete response in 2 patients, including the disappearance of skin lesions in 1 patient. These responses occurred between 54 and 57 days, and lasted for 92, 279+ and 505 days. Among the 4 PTCL patients, 1 achieved a PR at day 106 with >75% reduction in lymph nodes, which lasted for 282 days. PK profiles of patients in the study were generally consistent with that observed in Japanese MM patients. Plasma exposure of lenalidomide increased with increasing dose with a mean Cmax on Day 1 for 25 mg and 35 mg of 493 ng/mL and 628 ng/mL, respectively, and a mean AUC24 of 2774 ng/mL and 3062 ng/mL, respectively. There was no evidence of accumulation following multiple dosing for 8 days. Conclusions: This phase 1 study identified lenalidomide 25 mg daily per 28-day cycle as the dose and schedule for a subsequent phase 2 study in patients with ATL or PTCL. Based on the preliminary evidence of antitumor activity in ATL and PTCL patients, a phase 2 study in patients with relapsed ATL in Japan is planned. Disclosures: Off Label Use: Lenalidomide (CC-5013) is an investigational agent in Japan; this abstract assesses its use in adult ATL patients. Tobinai:Merck: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Zenyaku: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genzyme: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Eisai: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Symbio: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Eli Lilly: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Kyowa-Kirin: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Biomedics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Solasia Pharma: Clinical trials, Clinical trials Other, Research Funding; Novartis: Research Funding; Johnson & Johnson: Research Funding; Pfizer: Research Funding; GSK: Research Funding; Chugai/Roche: Research Funding; Takeda: Clinical trials, Clinical trials Other, Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1938-1938 ◽  
Author(s):  
Ajai Chari ◽  
Myo Htut ◽  
Jeffrey Zonder ◽  
Joseph W. Fay ◽  
Andrzej J Jakubowiak ◽  
...  

Abstract Background ARRY-520 is a novel KSP inhibitor with encouraging activity in patients (pts) with RRMM. In preclinical models, the activity of ARRY-520 is synergistic with BTZ, providing a rationale to combine these drugs in the clinic. Methods ARRAY-520-111 is a Phase 1 study to identify the maximum tolerated dose of ARRY-520, BTZ and dex. Eligible pts have RRMM with ≥ 2 prior lines of therapy, including a proteasome inhibitor (PI) and an immunomodulatory agent. ARRY-520 is administered intravenously (IV) on Days 1, 2, 15 and 16 (Schedule 1) or on Days 1 and 15 (Schedule 2); BTZ is administered IV or subcutaneously (SC) on Days 1, 8 and 15; and 40 mg oral dex, if applicable, is taken on Days 1, 8 and 15 in a 28-day cycle. Results A total of 41 pts have been treated to date at various dose levels of ARRY-520 and BTZ. Patients had a median of 5 prior regimens (range 2-10). All pts received a prior PI, 39 pts received prior BTZ, and 25 pts received at least 2 prior PI- including regimens (range 1-6). In Schedule 1, the initial dose level of ARRY-520 (1.0 mg/m2/day) with BTZ (1.3 mg/m2/day) and dex was not tolerated, with dose-limiting toxicities (DLT) in 2/3 pts (pneumonia and pseudomonal sepsis). After a protocol amendment, dose escalation resumed at reduced doses of ARRY-520 (0.5 mg/m2/day) and BTZ (1.0 mg/m2/day) without dex. The addition of prophylactic filgrastim (G-CSF) enabled escalation to full dose ARRY-520 and BTZ (1.5 and 1.3 mg/m2/day, respectively). Only 1 DLT of pneumonia was observed during the further dose escalation, at 1.0 mg/m2/day ARRY-520 and 1.0 mg/m2/day BTZ. Dex has been added to the combination at 1.25 mg/m2/day ARRY-520 and 1.3 mg/m2/day BTZ and this dose level has been well tolerated. Enrollment is ongoing in the final planned dose level. In Schedule 2, the initial dose level of ARRY-520 (2.25 mg/m2/day) with BTZ (1.3 mg/m2/day) and dex was well tolerated and enrollment is ongoing at 3.0 mg/m2/day ARRY-520 and 1.3 mg/m2/day BTZ + dex, the maximum planned dose of both drugs. The most commonly reported adverse events (AEs) (in ≥ 15% of pts) include anemia, diarrhea, pyrexia, upper respiratory tract infection, thrombocytopenia, cough, neutropenia, constipation, headache, fatigue, hyperuricemia, nausea, vomiting, and dizziness. All Grade 3 – 4 non-hematologic AEs have an incidence of < 10%. Based on the laboratory data, Grade 4 neutropenia was observed in 15% of patients, Grade 4 thrombocytopenia was observed in 10%. Apart from the one pt described above with the DLT of pseudomonal sepsis, no other febrile neutropenic events were reported. Neuropathy (Grade 2) was observed in 1 pt. Monopolar spindles have been observed in a post-dose biopsy for a pt treated at 1.0 mg/m2/day ARRY-520 + 1.3 mg/m2/day BTZ, indicating that pharmacodynamic activity of ARRY-520 is maintained in the presence of full dose BTZ. Preliminary signs of efficacy have been observed in this ongoing dose-escalation study. To date, among the subset of 13 evaluable pts who received doses at ≥ 1.25 mg/m2/day ARRY-520 + 1.3 mg/m2/day BTZ, 4 (31%) partial responses (PR) and 1 minimal response (MR) have been observed. By contrast, in the 27 patients receiving lower doses of ARRY-520 and BTZ, only 1 MR has been reported. An additional 29 pts experienced stable disease (SD) on ARRY-520 + weekly BTZ without the use of steroids (dex), including 17 pts with disease refractory to BTZ. Conclusions ARRY-520 + BTZ with prophylactic G-CSF appears well tolerated with manageable non-hematologic AEs in this heavily pretreated pt population and has demonstrated preliminary evidence of activity, including PRs and SD in pts with disease refractory to BTZ. These data support further exploration of this novel KSP inhibitor in combination with BTZ in expansion cohorts. The authors would like to acknowledge the dedicated research staff and physicians at the participating centers of the Multiple Myeloma Research Consortium for their contribution to this study. Disclosures: Chari: Onyx Pharmaceuticals: Membership on an entity’s Board of Directors or advisory committees; Millenium Pharmaceuticals: Membership on an entity’s Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity’s Board of Directors or advisory committees. Off Label Use: ARRY-520 is an investigational drug being combined with bortezomib in multiple myeloma. Zonder:Celgene Corporation: Consultancy; Onyx: Consultancy; Skyline Diagnostics: Consultancy. Jakubowiak:Millenuim: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Janssen Cilag: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau; Bristol Myers Squibb: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Onyx: Consultancy, Membership on an entity’s Board of Directors or advisory committees, Speakers Bureau. Hilder:Array BioPharma: Employment. Ptaszynski:Array BioPharma: Employment. Rush:Array BioPharma: Employment. Kaufman:Millenium: Consultancy; Merck: Research Funding; Novartis: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Onyx: Consultancy; Janssen: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 16-17 ◽  
Author(s):  
Martin Hutchings ◽  
Fritz C. Offner ◽  
Francesc Bosch ◽  
Giuseppe Gritti ◽  
Carmelo Carlo-Stella ◽  
...  

Background: Up to 50% of patients suffering from Non-Hodgkin`s lymphoma (NHL) become refractory to or relapse after treatment (M. Crump, Blood 2017). With this, the lack of curative outcomes for patients with both indolent and aggressive NHL subtypes remains an unmet medical need. The CD20 CD3 T cell bispecific antibody glofitamab induces specific T-cell activation and has demonstrated significant single agent activity in r/r NHL patients (NP30179 study, M. Dickinson, EHA 2020, Abstract S241). RO7227166, a CD19 targeted 4-1BBL (CD137) costimulatory agonist has shown synergistic anti-tumor activity when combined with glofitamab in preclinical models (fig 1). RO7227166 is a bispecific antibody-like fusion protein composed of a split trimeric 4-1BB ligand, a tumor antigen-targeting moiety recognizing CD19, and a silent Fc part preventing Fc-mediated toxicity. 4-1BB is an inducible co-stimulatory molecule expressed by activated T-cells or NK cells. Through CD19-binding, the 4-1BB ligand moiety can deliver co-stimulatory signals to activated T- and NK-cell subsets in the tumor. The expected mode of action (MoA) for this molecule is to deliver a costimulatory signal 2 to enhance the effector function of tumor-infiltrating T cells or NK cells upon their activation (signal 1) by a T-cell bispecific antibody (e.g. glofitamab, RO7082859) or a tumor-targeted ADCC antibody (e.g. obinutuzumab). By delivering direct T-cell-target cell engagement followed by costimulatory activation the aim is to offer a highly active off-the-shelf immunotherapy combination. Methods: RO7227166 is being developed in combination with glofitamab and obinutuzumab in a phase I, open-label, dose-escalation study BP41072 (NCT04077723). The study is designed to evaluate the combination maximum tolerated dose (MTD), safety, tolerability, pharmacokinetic (PK), and/or pharmacodynamic (PD) profile of escalating doses of RO7227166, and to evaluate preliminary anti-tumor activity in participants with r/r NHL. The dose escalation stage is divided into Part I (combination with obinutuzumab) and Part II (combination with glofitamab) followed by an expansion stage (Part III). During Part I patients receive 1000mg obinutuzumab intravenously (IV) at a q3w schedule in combination with CD19 4-1BBL IV. During part II glofitamab is given in a q3w schedule with RO7227166 introduced at C2D8 and administered concomitantly from C3D1 onwards. A fixed dose of obinutuzumab (Gpt; pre-treatment) is administered seven days prior to the first administration of RO7227166 and seven days prior to the first administration of glofitamab (M. Bacac, Clin Cancer Res 2018; M. Dickinson, EHA 2020, Abstract S241). Patients will initially be recruited into part I of the study only using single-participant cohorts, where a rule-based dose-escalation is implemented, with dosing initiated at 5 μg (flat dose). As doses of RO7227166 increase, multiple participant cohorts will be recruited and dose-escalation will be guided by the mCRM-EWOC design for overdose control. Commencement of Part II including decision on the RO7227166 starting dose will be guided by safety and PK data from Part I. Patients with r/r NHL meeting standard organ function criteria and with adequate blood counts will be eligible. The maximum duration of the study for each participant will be up to 24 months in Part I (excluding survival follow-up) and up to 18 months in Part II and Part III. Tumor biopsies and peripheral blood biomarker analyses will be used to demonstrate MoA and proof of concept of an off the shelf flexible combination option providing signals 1 and 2. Disclosures Hutchings: Takeda: Honoraria; Takeda: Research Funding; Genmab: Honoraria; Roche: Honoraria; Genmab: Research Funding; Janssen: Research Funding; Novartis: Research Funding; Sankyo: Research Funding; Roche: Consultancy; Genmab: Consultancy; Takeda: Consultancy; Roche: Research Funding; Celgene: Research Funding; Daiichi: Research Funding; Sanofi: Research Funding. Bosch:Hoffmann-La Roche: Research Funding. Gritti:Italfarmaco: Consultancy; F. Hoffmann-La Roche Ltd: Honoraria; Jannsen: Other: Travel Support; Autolus: Consultancy; IQVIA: Consultancy; Kite: Consultancy; Takeda: Honoraria; Amgen: Honoraria. Carlo-Stella:Bristol-Myers Squibb, Merck Sharp & Dohme, Janssen Oncology, AstraZeneca: Honoraria; Servier, Novartis, Genenta Science srl, ADC Therapeutics, F. Hoffmann-La Roche, Karyopharm, Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; ADC Therapeutics and Rhizen Pharmaceuticals: Research Funding; Boehringer Ingelheim and Sanofi: Consultancy. Townsend:Roche, Gilead: Consultancy, Honoraria. Morschhauser:Gilead: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Servier: Consultancy; Janssen: Honoraria; Epizyme: Membership on an entity's Board of Directors or advisory committees; F. Hoffmann-La Roche: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Genentech, Inc.: Consultancy. Cartron:Celgene: Consultancy, Honoraria; F. Hoffmann-La Roche: Consultancy, Honoraria; Sanofi: Honoraria; Abbvie: Honoraria; Jansen: Honoraria; Gilead: Honoraria. Ghesquieres:CELGENE: Consultancy, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Roche: Consultancy, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Gilead: Consultancy, Honoraria, Other: TRAVEL, ACCOMMODATIONS, EXPENSES; Janssen: Honoraria. de Guibert:Gilead Sciences: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Janssen: Consultancy, Honoraria. Herter:Roche Glycart AG: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties. Korfi:Roche Diagnostics GmbH: Consultancy. Craine:Roche: Current Employment. Mycroft:Roche: Current Employment. Whayman:Roche: Current Employment. Mueller:Roche: Current Employment. Dimier:Roche: Current Employment. Moore:Roche: Current Employment. Belli:Roche Pharma: Current Employment. Kornacker:Hoffmann-La Roche Ltd.: Current Employment, Current equity holder in publicly-traded company. Lechner:Roche Diagnostics GmbH: Current Employment, Current equity holder in publicly-traded company. Dickinson:Gilead: Consultancy, Honoraria, Research Funding, Speakers Bureau; Merck Sharp & Dohme: Consultancy; Novartis: Consultancy, Honoraria, Research Funding, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 49-49 ◽  
Author(s):  
Edward A. Stadtmauer ◽  
Adam D. Cohen ◽  
Kristy Weber ◽  
Simon F Lacey ◽  
Vanessa E. Gonzalez ◽  
...  

Background: Autologous T cells genetically modified with a lentiviral vector to express affinity-enhanced T cell receptors (TCR) or chimeric antigen receptors have shown great promise for the treatment of cancer. NY-ESO-1 is a cancer testis antigen with little normal tissue expression but with aberrant expression in MM, sarcomas, and melanomas. An HLA-A201 restricted TCR recognizing the NY-ESO-1/LAGE-1 157-165 epitope (SLLMWITQC) kills NY-ESO positive cell lines and has been used to treat 25 patients with MM after ASCT with expansion, persistence, antigen-directed functionality and long-term safety and antitumor activity (Nat Med 2015, Blood Adv 2019). We hypothesized removal of the genes encoding the endogenous TCR, TCRα (TRAC) and TCRβ (TRBC), would enhance NY-ESO TCR expression and reduce TCR mispairing and with removal of PD-1 (PDCD1) would enhance activity and persistence. We previously demonstrated CRISPR/Cas9 and TCRα, TCRβ and PDCD1 targeting gRNAs could be successfully introduced via electroporation in preclinical models to disrupt gene expression (Clin Cancer Res 2017). We therefore began a phase 1 pilot clinical trial for pts with advanced MM and sarcoma of NY-ESO-1 TCR-expressing T cells with CRISPR/Cas9 TCRα, TCRβ and PDCD1 edited genes to assess safety, feasibility and activity (NCT03399448). Methods: Adults with HLA-A*0201 and expressing NY-ESO-1 and/or LAGE-1 antigen with advanced MM, synovial sarcoma, and myxoid/round cell liposarcoma (MRCL) with adequate performance and organ function and, for MM relapsed or refractory to at least 3 prior regimens and, for MRCL, proven metastatic disease or surgically inoperable local recurrence, were enrolled. Autologous T cells were transfected with Cas9 protein complexed with single guide RNAs against TRAC, TRBC and PDCD1 and subsequently transduced to express NY-ESO-1-specific TCR at the University of Pennsylvania. Frequency of NYCE T cells in final product was measured by flow cytometric dextramer analysis. Once cells were successfully manufactured and released, pts received fludarabine 30mg/m2 and cyclophosphamide 300mg/m2 daily on day -4,-3,-2. On Day 0 pts received a single infusion of thawed NYCE T cells as an out-patient. Pts were monitored closely for the first 28 days, monthly till 6 mo and then followed every 3 mo for adverse events, antitumor response and survival, NYCE T cell expansion, persistence, trafficking, phenotype and function, and immunogenicity. An assessment after accrual of the first 3 subjects in this ongoing trial was planned and is reported here. Results: 3 pts, 2 with MM and 1 with MRCL, have received NYCE T cells. Pt 1 is a 67 y/o F with IgG kappa MM with lytic bone lesions, and a +17q after 8 lines of therapy including 3 ASCTs, lenalidomide, pomalidomide, bortezomib, carfilzomib, daratumumab, and panobinostat. Pt 2 is a 65 y/o M with a recurrent MRCL manifested by abdominal and pelvic involvement after neo-adjuvant doxorubicin, multiple resections and radiation treatments with progression at time of enrollment. Pt 3 is a 62 y/o F with kappa light chain MM with lytic bone lesions and plasmacytomas and a +1q after 7 lines of therapy including lenalidomide, pomalidomide, bortezomib, carfilzomib, daratumumab, 2 ASCTs and an immunoconjugate . Manufacturing for these pts resulted in satisfactory products with 89.4 to 96% viability, transduction efficiency by qPCR of 0.04 to 0.2 copies/cell , residual Cas9 concentration 0 to 0.37 ng/ml, dextramer 0.4 to 1.8% NY-ESO-1 expression. TRAC, TRBC, and PDCD1 disruption efficiency was 44.3 to 49.4, 3.61 to 15.7 and 15.6 to 20.2% respectively. Pts tolerated treatment well without neurotoxicity or CRS. By day +60 pt 1 progressed by IMWG. Pt 2 received 1 U PRBC. By day +90 he remained with stable disease by serial CT scans. Pt 3 is too early to evaluate. Serial qPCR for copies of lentiviral transcripts in peripheral blood and tumor biopsies for pts 1+2 showed in vivo expansion, stable persistence and tumor targeting (Figure). Conclusion: Early results of a phase 1 trial of NYCE T cells infused in 3 pts with advanced MM and MRCL show safety and feasibility and viable, expanding, and persisting CRISPR/Cas9 gene edited T cells that trafficked to tumor. The persistence of the NYCE T cells suggests that immunogenicity from multiplexed gene-editing using Cas9 is minimal under these conditions. Further characterization of phenotype and function of these cells and clinical outcomes will be presented. Figure Disclosures Stadtmauer: Celgene: Consultancy; Takeda: Consultancy; Janssen: Consultancy; Amgen: Consultancy; Novartis: Consultancy, Research Funding; Tmunity: Research Funding; Abbvie: Research Funding. Cohen:Poseida Therapeutics, Inc.: Research Funding. Lacey:Novartis: Patents & Royalties: Patents related to CAR T cell biomarkers; Tmunity: Research Funding; Novartis: Research Funding. Melenhorst:Incyte: Research Funding; Novartis: Research Funding, Speakers Bureau; Parker Institute for Cancer Immunotherapy: Research Funding; Genentech: Speakers Bureau; Stand Up to Cancer: Research Funding; IASO Biotherapeutics, Co: Consultancy; Simcere of America, Inc: Consultancy; Shanghai Unicar Therapy, Co: Consultancy; Colorado Clinical and Translational Sciences Institute: Membership on an entity's Board of Directors or advisory committees; National Institutes of Health: Research Funding. Fraietta:Tmunity: Research Funding; Cabaletta: Research Funding; LEK Consulting: Consultancy. Mangan:amgen: Speakers Bureau; takeda: Speakers Bureau; celgene: Speakers Bureau; janssen: Speakers Bureau. Lancaster:novartis: Research Funding. Suhoski:novartis: Research Funding. Fesnak:Novartis: Research Funding. Young:novartis: Research Funding. Chew:tmunity: Other: Scientific Founder, Research Funding; novartis: Research Funding. Zhao:Tmunity: Membership on an entity's Board of Directors or advisory committees, Research Funding; novartis: Research Funding. Hwang:Novartis: Research Funding; Tmunity: Research Funding. Hexner:novartis: Research Funding. June:Novartis: Research Funding; Tmunity: Other: scientific founder, for which he has founders stock but no income, Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document