scholarly journals First Results from a Nationwide Prospective Non-Interventional Study of Venetoclax-Based 1st Line Therapies in Patients with Acute Myeloid Leukemia (AML) - Revive Study

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 27-28
Author(s):  
Ofir Wolach ◽  
Itai Levi ◽  
Jonathan Canaani ◽  
Tamar Tadmor ◽  
Sigal Tavor ◽  
...  

Background: The outcome of elderly patients with Acute Myeloid Leukemia (AML) is poor and treatment options in these high-risk groups are limited. Recently, venetoclax combinations with hypomethylating agents or low dose cytarabine were approved to treat patients with AML ineligible for intensive chemotherapy. However limited prospective data is available on the safety and efficacy of venetoclax treatment in routine clinical practice. Israel is among the first countries to have approved venetoclax-based combinations as first line therapy for AML and this treatment is fully reimbursed via the national health system. Here we present the initial results of a prospective, multicenter, nationwide trial that sought to assess the use of venetoclax-based therapy in a real-world setting. Methods: A prospective observational nationwide multicenter trial. Newly diagnosed patients with AML were enrolled at the time of venetoclax-based therapy initiation. Demographic, clinical and patient-related baseline characteristics were documented. Treatment patterns, safety and efficacy outcomes are reported. Patient related outcomes were assessed at baseline and after cycle 3 using the EQ-5D-5L and EORTC QLQ-C30 questionnaires. Results: A total of 70 patients were enrolled between August 2019 and June 2020 (data cut off) with a median age of 75 years (range 45-88) and a median follow-up of 74 days (8-232). Two-thirds of patients were males (62.9%). Over one-quarter (28.6%) of patients had an ECOG performance status of 2 or higher; the median modified Charlson Comorbidity Index (CCI) was 0 (range 1-4) with 27.1% with a CCI ≥2. De-novo AML was documented in 44.3%, secondary AML was diagnosed in 52.8% (secondary to MDS (27.1%), MPNs (11.4%) and therapy related AML (14.3%)). European LeukemiaNet (ELN) risk category was favorable, intermediate and adverse in 8.6%, 30% and 42.9%, respectively (Table 1). Time from diagnosis to initiation of therapy was 8 days (median, range 1-38). The main reasons for choosing venetoclax-based low intensity therapy as reported by treating physicians were patient related factors (mainly age>75 years, performance status) in the majority of cases and adverse disease biology predicting poor response to intensive chemotherapy in 17.1%. Of the 57 patients with available data, 38 (67%) initiated therapy in an inpatient setting with a median hospitalization duration of 12 days (range 1-62 days) and 19 (33%) patients started therapy as outpatients. By data cutoff, of 63 patients that initiated therapy 45, 23 and 7 patients completed cycle 1, cycle 3 and cycle 6 assessments, respectively. Complete remission (CR) or CR with incomplete count recovery (CRi) was achieved in 23/44 (52.3%) patients that were assessed for best response. Of responding patients, 6 (23%, 5 CRi and 1 Partial Remission (PR)) went on to receive an allogeneic transplantation (median age 70.5 years). Ninety percent of patients received venetoclax in combination with hypomethylating agents (azacytidine n=56, decitabine n=1). The full dose of 400mg was administered in 87% of cases with a median ramp-up duration of 3 days. Dose interruptions, dose modifications and dose discontinuations during follow-up were frequent and occurred in 41%, 35% and 27%, respectively. During therapy 63.5% of patients experienced adverse events (AE) of any grade; severe AE's were recorded in 41.3% of patients. Febrile neutropenia was documented in 22.2% and Tumor Lysis Syndrome (TLS) was documented in 2 patients (grade 2; 3.2%). Early death rates at 30 and 60 days were 6.3% and 11.1%, respectively. Conclusion: In the real-world setting venetoclax-based therapies are effective and associated with manageable toxicity including in the outpatient setting. In routine practice patient-related factors and disease-related factors (disease-risk) both seem to play a role in choice of therapy. Venetoclax treatment in real-life practice in Israel appears to follow general recommendations, is tolerable with approximately 90% of patients achieving target dose. These observational data are expected to provide information on patient selection patterns, efficacy and safety and patient related outcomes in patients not in clinical trial. Table Disclosures Wolach: AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Fees for lectures and Consultancy, Research Funding; Astellas: Consultancy, Honoraria, Other: Fees for lectures and Consultancy; Pfizer: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Other: Fees for lectures and Consultancy; Amgen: Other: Fees for lectures and Consultancy; Janssen: Other: Fees for lectures and Consultancy. Levi:Abbvie Inc: Consultancy, Research Funding. Canaani:Abbvie: Consultancy, Honoraria, Research Funding. Tadmor:AbbVie: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Sanofi: Consultancy, Speakers Bureau; Medison: Consultancy, Speakers Bureau; Neopharm: Consultancy, Speakers Bureau; 6. Novartis Israel Ltd., a company wholly owned by Novartis Pharma AG: Consultancy, Speakers Bureau. Tavor:Abbvie: Consultancy, Honoraria, Research Funding. Hellmann:Abbvie: Research Funding. Stemer:Abbvie: Research Funding. Cohen:Abbvie Inc: Current Employment, Current equity holder in publicly-traded company. Afik:Abbvie Inc: Current equity holder in publicly-traded company. Ofek:Abbvie Inc: Current Employment. Banayan:Abbvie Inc: Current Employment, Current equity holder in publicly-traded company. Kan:Abbvie Inc: Current Employment, Current equity holder in publicly-traded company. Grunspan:Abbvie Inc: Current Employment, Current equity holder in publicly-traded company. Ofran:AbbVie: Membership on an entity's Board of Directors or advisory committees. Moshe:Astellas: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Abbvie: Consultancy, Honoraria, Research Funding.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1246-1246
Author(s):  
Ofir Wolach ◽  
Itai Levi ◽  
David Lavie ◽  
Jonathan Canaani ◽  
Sigal Tavor ◽  
...  

Abstract Background: Venetoclax-based combinations were recently approved to treat patients (pts) with acute myeloid leukemia (AML) ineligible for intensive chemotherapy. Limited prospective 'real-world' data is available on treatment patterns of venetoclax-based therapy in routine clinical practice. We investigated patterns of patient selection, efficacy, toxicity, patient related outcome and post-remission management in a nationwide multicenter prospective observational trial. Methods: Newly diagnosed pts with AML were enrolled at the time of venetoclax-based therapy initiation from 10 medical centers in Israel. Demographic, clinical and patient-related baseline characteristics were documented. Treatment patterns, safety and efficacy outcomes are reported. Results: Between August 12, 2019, and June 17, 2021(data cut) ,127 AML pts were enrolled to receive venetoclax based therapy. Baseline patient and disease characteristics are reported in Table 1. The main reasons for physician's choice of venetoclax-based therapy were age ≥75, comorbidities and ECOG ≥2 (patient related factors) in 76% of cases and adverse disease biology predicting poor response to intensive chemotherapy (disease related factors) in 24% of cases. Most pts started therapy in an inpatient setting, 82 (64.6%) with a median hospitalization duration of 14 days, while 44 pts (34.6%) started therapy as out pts. Pts received a median of 3.8 cycles of therapy (range 1-21). Most pts (97%) received venetoclax in combination with hypomethylating agents. The full dose of 400mg QD after a median ramp-up duration of 3 days was achieved in 88% of the pts. Dose interruptions and dose modifications during follow-up occurred in 59 (46%) and 30 (24%) of pts, respectively. To allow for adequate follow up for response assessment, efficacy analysis was limited to pts enrolled prior to December 31, 2020, and included 108 pts with a median follow-up of 8 months (range 1-20). As of data cut, 93 pts completed cycle 1 of therapy, 66 pts completed cycle 3 and 39 pts completed cycle 6. 29 pts (27%) are still active on treatment. Best composite complete remission [CCR = complete remission (CR) plus CR with incomplete count recovery (CRi)] was achieved in 62 (57%) pts. CCR rates were assessed in different pre-defined subgroups. Best CCR in pts selected for therapy based on disease-related and patient-related factors were 70% and 54% respectively. Best CCR in pts with AML arising from MPN and pts with other AML were 45% and 58% respectively. Estimated median overall survival (OS) of all pts was 9.6 months (range 7.4-10.6) (Figure 1). Achieving CCR was associated with a superior probability for survival. Estimated median OS was 13.6 months (range 10.6 - not reached) in pts achieving CCR and 4.2 months (range 1.2-10.3) in non-CCR (p<.0001). Of responding pts (CR/CRi, partial remission (PR), morphologic leukemia free state (MLFS), 27 (37%) progressed. Estimated median time to progression was 9.2 months (6.7-NR). Allogeneic transplantation following venetoclax based treatment was offered to 16 (26%) pts with a median age of 71 years (range 43-77). Last documented response prior to transplant was CR in 5 (32%) pts, CRi 9 (56%), MLFS 1 (6%) and PR in 1 (6%) patient. Among grade ≥3 AEs were febrile neutropenia in 28% and infections in 21% of pts. Clinical and laboratory tumor lysis syndrome (TLS) was documented in 2 and 4 pts, respectively. Antifungal prophylaxis was administered in 20% of pts and granulocyte colony-stimulating factor (GCSF) support was used in 17% of pts in response. Early death rate at 30 and 60 days were 7% and 13%, respectively. Conclusion: This prospective real-world analysis reveals unique patterns of patient selection and venetoclax treatment utilization in a medical system with wide access for this indication. Venetoclax-based therapies are effective and associated with manageable toxicity, including in AML patient populations that were excluded from previous registration trials with comparable CCR and early death rates. Factors associated with patient selection in the 'real-world' setting and immature follow up data most probably led to a shorter estimated median OS in this analysis as compared to controlled trials. The REVIVE study continues to expand and is expected to provide additional insights on treatment patterns, management as well as clinical and patient related outcomes. Figure 1 Figure 1. Disclosures Wolach: Janssen: Consultancy; Novartis: Consultancy; Amgen: Research Funding; Astellas: Consultancy; Abbvie: Consultancy, Honoraria, Research Funding; Neopharm: Consultancy. Levi: AbbVie: Consultancy, Research Funding. Lavie: AbbVie: Membership on an entity's Board of Directors or advisory committees, Other: Fees for lectures; BMS: Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Other: Fees for lectures; Roche: Other: Fees for lectures; Novartis: Other: Fees for lectures. Tavor: AbbVie: Consultancy. Hellmann: AbbVie: Consultancy. Tadmor: Janssen: Consultancy, Honoraria, Research Funding; AbbVie: Consultancy, Honoraria, Research Funding. Zuckerman: Gilead Sciences: Honoraria, Speakers Bureau; Novartis: Honoraria; Janssen: Honoraria; Cellect Biotechnology: Honoraria; BioSight Ltd: Honoraria; AbbVie: Honoraria; Orgenesis Inc.: Honoraria. Stemer: AbbVie: Consultancy. Berelovich: AbbVie: Current Employment, Current equity holder in publicly-traded company. Ofek: AbbVie: Current Employment, Current equity holder in publicly-traded company. Frankel: AbbVie: Current Employment, Current equity holder in publicly-traded company. Grunspan: AbbVie: Current Employment, Other: May hold equity. Ofran: Medison Israel: Consultancy; Pfizer: Consultancy; Astellas: Consultancy; AbbVie: Consultancy; Janssen: Consultancy. Moshe: Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Lectures; Astellas: Membership on an entity's Board of Directors or advisory committees, Other: Lectures; AbbVie: Membership on an entity's Board of Directors or advisory committees, Other: Lectures.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2638-2638 ◽  
Author(s):  
Amanda Winters ◽  
Jonathan A Gutman ◽  
Enkhtsetseg Purev ◽  
Brett M. Stevens ◽  
Shanshan Pei ◽  
...  

Background: Venetoclax (ven) was approved for older untreated acute myeloid leukemia (AML) patients due to high response rates and durable remissions. As a participating site in the dose escalation study, we observed deeper/more durable responses in some who received >400mg ven. We also noted 16/33 discontinued azacitidine (aza) after achieving a response; 9 relapsed and 7 remained in long term remission on ven only. Based on these observations, we designed a study that hypothesized: A)Higher initial doses of ven would allow deeper/more durable responses, and B)Multi modality high sensitivity measurable residual disease (MRD) testing could identify patients able to discontinue aza and remain on maintenance ven. Methods: This is an ongoing phase 2 study (NCT03466294) of 42 untreated AML patients ≥60 who decline/are ineligible for induction. Patients have adequate organ function and white blood cell counts <25x109/L (hydrea permitted). In cycle 1, patients receive aza 75mg/m2 on days (d) 1-7 and ven, escalated from 100 to 200 to 400 to 600mg on d 1-4. Ven continues at 600mg d 5-28 and bone marrow biopsies (BMBXs) are performed on d 8 and 28. Patients who achieve morphologic remission without count recovery have up to 14 days off therapy before subsequent cycles, with growth factor support; "upgraded" responses are recorded if count recovery occurs. Non responders discontinue or receive up to two additional cycles of aza and ven 600mg. Responders who remain MRD+ by multiparameter flow cytometry (MPFC, Hematologics) and/or digital droplet PCR (ddPCR) for as many identifiable diagnostic genes as possible also receive up to 2 additional cycles of aza and ven 600mg. MRD+ responders after 3 cycles continue aza and ven 400mg until toxicity/progression. Patients who experience MRD- responses at any time stop aza and continue ven 400mg daily (Fig 1). Results: 30 patients enrolled between May 2018 and July 2019; median age is 71 (60-88), 10% evolved from MDS and 10% and 73% had intermediate and unfavorable risk disease by ELN, respectively (Table 1). 732 adverse events (AEs) occurred; 46 (6%) were serious, the most common were neutropenic fever (37%) and pneumonia (13%). The most common >grade 2 related AEs were leukopenia (53%), thrombocytopenia (44%) and neutropenia (35%); there were no related grade 5 AEs. The overall response rate was 70% (21/30; CR=19, MLFS=2). Median number of cycles to achieve best response was 1. Significant blast reductions were seen on day 8; of the 28 with interpretable day 8 BMBXs, 10 achieved MLFS on day 8. 4 completed ≥1 cycle and were refractory. An additional 4 did not complete cycle 1: 1 died of disease and 3 elected to come off therapy (all subsequently died of disease). Four (19%) responders relapsed, after a median 180 days (27-279). With median follow up of 214 days, median response duration has not been reached. 10 patients died, after a median 65 days (29-256); 1/30 died within 30 days. Median overall survival has not been reached. Of the 26 who completed ≥1 cycle, 19 were MRD- by MPFC, including 18/19 who achieved CR. Of these 26, 3 were not monitored by ddPCR: for 2 patients this was due to the absence of detectable baseline mutations and for 1 patient it was due to refractory disease. The remaining 23 had ddPCR monitoring; 3 became MRD- by this modality (Fig 2). All 3 were also MRD- by MPFC and per protocol discontinued aza and initiated ven maintenance (Fig 1). MRD negativity by both parameters occurred after cycles 1, 2 and 3, respectively. One MRD- patient relapsed after 216 days; two remain in remission after 301 and 124 days. An additional 4 who achieved MRD+ responses discontinued aza at their insistence (and in violation of the protocol); 1 relapsed after 279 days, and 3 remain in ongoing remission. Univariate predictors of refractory disease were FAB M0/M1 (OR 0.070, p=0.02) and RAS pathway mutations (OR 14.25, p=0.02). Conclusions: Higher initial doses of ven are tolerated in this population. Blast reduction occurs quickly in many patients (day 8), for this low intensity regimen. Response rates are consistent with lower doses of ven. Very deep responses, as measured by highly sensitive MRD methods (MPFC and ddPCR are capable of sensitivity up to 0.02%), are attainable. Longer follow up time will determine if higher ven doses and MRD-driven decisions related to continuation of aza result in more durable responses. Increased maturation of blasts and RAS pathway mutations are predictors for refractory disease. Disclosures Lyle: Pfizer: Membership on an entity's Board of Directors or advisory committees; Daiichi Sankyo Incyte: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Pollyea:Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celyad: Consultancy, Membership on an entity's Board of Directors or advisory committees; Diachii Sankyo: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Forty-Seven: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5223-5223
Author(s):  
Jamshid S Khorashad ◽  
Srinivas K Tantravahi ◽  
Dongqing Yan ◽  
Anna M. Eiring ◽  
Hannah M. Redwine ◽  
...  

Abstract Introduction. Development of abnormal Philadelphia (Ph) negative clones following treatment of chronic myeloid leukemia (CML) patients with imatinib has been observed in 3 to 9% of patients. Here we report on a 77 year old male diagnosed with CML that responded to imatinib treatment and subsequently developed chronic myelomonocytic leukemia (CMML). He achieved major cytogenetic response within 3 months but this response coincided with the emergence of monocytosis diagnosed as CMML. Five months after starting imatinib treatment the patient succumbed to CMML. We analyzed five sequential samples to determine whether a chronological order of mutations defined the emergence of CMML and to characterize the clonal evolution of the CMML population. Materials and Method. Five samples (diagnostic and four follow up samples) were available for analysis. CMML mutations were identified by whole exome sequencing (WES) in CD14+ cells following the onset of CMML, using CD3+ cells as constitutional control. Mutations were validated by Sequenom MassARRAY and Sanger sequencing and quantified by pyrosequencing. Deep WES was performed on the diagnostic sample to determine whether the mutations were present at CML diagnosis. To determine the clonal architecture of the emerging CMML, colony formation assays were performed on the diagnostic and the next two follow-up samples (Samples 1-3). More than 100 colonies per sample were plucked for DNA and RNA isolation. The DNA from these colonies were tested for the presence of the confirmed CMML mutations and the RNA was used for detection of BCR-ABL1 transcript using a Taqman real time assay. Results. Four mutations were identified by Sequenom and WES throughout the patient's time course [KRASG12R, MSLNP462H, NTRK3V443I and EZH2I669M ]. Sequenom did not identify these at diagnosis while deep WES did. Clones derived from colony formation assay revealed three distinct clones present in all samples analysed. Clone 1 had only KRASG12R, clone 2 had KRASG12R, MSLNP462H, and NTRK3V443I, and clone 3 had all four mutations. All clones containing any of these four mutations were BCR/ABL1 negative. Analysis of clonal architecture indicated that KRASG12R was acquired first and EZH2I669M last, while MSLNP462H and NTRK3V443I were acquired in between. These CMML clones increased proportionately as clinical CML metamorphosed into clinical CMML after initiation of imatinib therapy. Consistent with the colony data, pyrosequencing revealed that the ratio between the mutants remained largely stable throughout the follow up period. Conclusion. This case illustrates how targeted therapy impacts clonal competition in a heterogeneous MPN. While the CML clone was dominant in the absence of imatinib, it was quickly outcompeted by the CMML clones upon initiation of imatinib therapy. The clonal architecture analysis, in combination with in vivo kinetics data, suggest that the KRASG12R mutation alone was able to produce a CMML phenotype as clones with just KRASG12R remained at a relatively stable ratio during follow up. Unexpectedly, acquisition of additional mutations, including EZH2I669M as the last mutational event identified in this patient, did not increase clonal competitiveness, at least in the peripheral blood. These data show that clonal evolution may not invariably increase clonal fitness, suggesting that factors other than Darwinian pressures contribute to clonal diversity in myeloproliferative neoplasms. Disclosures Deininger: Gilead: Research Funding; Bristol-Myers Squibb: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Incyte: Consultancy, Membership on an entity's Board of Directors or advisory committees; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3895-3895
Author(s):  
Hannah Asghari ◽  
Dasom Lee ◽  
Yehuda E. Deutsch ◽  
Onyee Chan ◽  
Najla Al Ali ◽  
...  

Background The therapeutic landscape for acute myeloid leukemia (AML) has become complex with recent drug approvals. CPX-351 has become standard-of-care for patients (pts) with therapy-related AML and AML with myelodysplasia-related changes. Moreover, earlier phase studies combining hypomethylating agents (HMA) and Venetoclax (HMA+Ven) in the frontline setting for elderly patients have demonstrated high response rates and improved survival. Given the overlapping indications, yet lack of comparative outcome data between these therapeutic regimens, treatment decisions have become challenging in the frontline setting. Therefore, we compared the outcomes of newly diagnosed AML pts receiving HMA+Ven vs. CPX-351. Methods We retrospectively annotated 119 pts that received frontline treatment with HMA+Ven and CPX-351 at Moffitt Cancer Center and Memorial Healthcare System between 2013 and 2019. Pts were divided in two cohorts: HMA+Ven (Cohort A) or CPX-351(Cohort B). Via comprehensive chart review of each patient that received HMA+Ven, we further classified a subgroup of pts meeting criteria to receive CPX-351 as CPX-351eligible. Clinical and molecular data were abstracted for each patient in accordance with IRB requirements. Overall response rate (ORR) was the combined total of complete remission (CR), complete remission with incomplete count recovery (CRi), and morphologic leukemia free state (MLFS). Fisher's Exact method was used to determine significance. Kaplan-Meier analysis was performed to estimate median overall survival (mOS) with log-rank test to determine significance. All p-values are two-sided. Results Out of 119 total pts, 41 pts received HMA+Ven (Cohort A) and 78 pts received CPX-351 (Cohort B) with baseline characteristics outlined in Table 1. Among 111 response evaluable pts, ORR was 64.1% in Cohort A, including 28.2% with CR and 28.2% with CRi (Table 2). ORR was 50.0% in Cohort B, comprised of CR in 29.2% and CRi in 18.1%. There was no difference in ORR between Cohort A and Cohort B (64.1% vs. 50%, p 0.17). A significantly greater fraction of pts in Cohort B underwent allogeneic stem cell transplant (allo-SCT) (24.4% vs. 2.4%, p=0.004). ORR was higher in pts with European LeukemiaNet (ELN)-defined favorable/intermediate (fav/int) risk compared to adverse risk group in Cohort A (100% vs. 58.3%, p=0.03), however there was no difference in Cohort B (52.6% vs. 49.1%, p=1.0). ORR was similar among adverse risk groups in both cohorts (58.3% in Cohort A vs. 49.1% in Cohort B, p=0.47). Among responders, median time to best response was significantly longer in Cohort A (61.0 days vs. 40.5 days, p<0.0001). Median duration of response was not reached (NR) in both cohorts. Impact of somatic mutations on ORR is represented in Figure 3. Median follow-up was 6.5 months (mo) in Cohort A and 13.0mo in Cohort B. Median OS was similar in both cohorts (A vs. B, 13.8mo vs. 11.1mo, p=0.82) (Figure 1). Among responders, mOS was NR in Cohort A and 18.2mo in Cohort B (p=0.88) (Figure 2). Compared to Cohort B, mOS was superior for pts with fav/int risk disease in Cohort A (14.2mo (B) vs. NR (A), p=0.045) and not different for adverse risk group (11.1mo (B) vs. 7.3mo (A), p=0.2). Prior HMA exposure was 26.8% in Cohort A and 29.5% in Cohort B for an antecedent hematologic malignancy, however it did not impact mOS (p=0.86) or ORR (p=0.7). Early mortality rates for Cohort A and B were similar at day 30 (2.4% vs. 0%) and day 60 (4.9% vs. 3.8%). Rate of relapse was similar between cohorts A and B (16.0% vs. 30.6%, p=0.24). We then compared the outcomes of pts in Cohort B to CPX-351eligible arm from Cohort A (n=14). ORR and mOS were similar in Cohort B and CPX-351 eligible arm (ORR: 50% vs. 50%, p=1.0; mOS 11.1mo vs. 13.8mo, p=0.43). Only 1 patient (7.1%) of the CPX-351eligible arm underwent allo-SCT. Conclusion Our study demonstrates that HMA+Ven results in comparable response rates and survival outcomes to patients receiving CPX-351 when used as an initial remission therapy for patients with newly diagnosed AML, however the median follow up for patients receiving HMA+Ven was short. Survival did not appear to be impacted by a significantly greater proportion of patients proceeding to allo-SCT in the CPX-351 arm. Overall, HMA+Ven may represent a reasonable frontline remission therapeutic choice in patients with AML and a randomized trial would seem justified. Disclosures Kuykendall: Abbvie: Honoraria; Janssen: Consultancy; Incyte: Honoraria, Speakers Bureau; Celgene: Honoraria. List:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Lancet:Pfizer: Consultancy, Research Funding; Agios, Biopath, Biosight, Boehringer Inglheim, Celator, Celgene, Janssen, Jazz Pharmaceuticals, Karyopharm, Novartis: Consultancy; Daiichi Sankyo: Consultancy, Other: fees for non-CME/CE services . Sallman:Celyad: Membership on an entity's Board of Directors or advisory committees. Komrokji:celgene: Consultancy; Agios: Consultancy; pfizer: Consultancy; DSI: Consultancy; JAZZ: Speakers Bureau; JAZZ: Consultancy; Novartis: Speakers Bureau; Incyte: Consultancy. Sweet:Abbvie: Membership on an entity's Board of Directors or advisory committees; Stemline: Consultancy; Agios: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Incyte: Research Funding; Astellas: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pfizer: Consultancy; Celgene: Speakers Bureau; Jazz: Speakers Bureau. Talati:Agios: Honoraria; Jazz Pharmaceuticals: Honoraria, Speakers Bureau; Celgene: Honoraria; Daiichi-Sankyo: Honoraria; Astellas: Honoraria, Speakers Bureau; Pfizer: Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-12
Author(s):  
Justin M. Watts ◽  
Tara Lin ◽  
Eunice S. Wang ◽  
Alice S. Mims ◽  
Elizabeth H. Cull ◽  
...  

Introduction Immunotherapy offers the promise of a new paradigm for patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). CD123, the IL-3 receptor alpha-chain, represents an attractive target for antibody therapies because of its high expression on AML/MDS blasts and leukemic stem cells compared to normal hematopoietic stem and progenitor cells. APVO436, a novel bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule, depleted CD123+ cells in AML patient samples ex vivo (Godwin et al. ASH 2017), reduced leukemia engraftment in a systemic AML xenograft model (Comeau et al. AACR 2018), and transiently reduced peripheral CD123+ cells in non-human primates with minimal cytokine release and in a dose-dependent fashion (Comeau et al. AACR 2019). These data provide a basis for the clinical application of APVO436 as a treatment in AML and MDS. Here, we report preliminary data from a first-in-human dose-escalation study of APVO436 in patients with R/R AML and high-risk MDS. Study Design/Methods This ongoing Phase 1/1b study (ClinicalTrials.gov: NCT03647800) was initiated to determine the safety, immunogenicity, pharmacokinetics, pharmacodynamics, and clinical activity of APVO436 as a single agent. Major inclusion criteria were: R/R AML with no other standard treatment option available, R/R MDS with &gt; 5% marrow blasts or any peripheral blasts and failure of a hypomethylating agent, ECOG performance status ≤ 2, life expectancy &gt; 2 months, white blood cells ≤ 25,000 cells/mm3, creatinine ≤ 2 x upper limit of normal (ULN), INR and PTT &lt; 1.5 x ULN and alanine aminotransferase &lt; 3 x ULN. Patients were not restricted from treatment due to cytogenetic or mutational status. Intravenous doses of APVO436 were administered weekly for up to six 28-day cycles (24 doses) with the option to continue dosing for up to 36 total cycles (144 doses). Flat and step dosing regimens were escalated using a safety-driven modified 3 + 3 design. Pre-medication with diphenhydramine, acetaminophen, and dexamethasone was administered starting with dose 1 to mitigate infusion related reactions (IRR) and cytokine release syndrome (CRS). First doses and increasing step doses of APVO436 were infused over 20-24 hours followed by an observation period of 24 hours or more. Bone marrow biopsies were performed every other cycle with responses assessed by European Leukemia Net 2017 criteria for AML or International Working Group (IWG) 2006 criteria for MDS. Results The data cut-off for this interim analysis was July 9, 2020. Twenty-eight patients with primary R/R AML (n=19), therapy-related R/R AML (n=3), or high-risk MDS (n=6) have been enrolled and received a cumulative total of 186 doses. The number of doses received per patient ranged from 1 to 43 (mean of 6.4 doses). Most patients discontinued treatment due to progressive disease; however, blast reduction was achieved in 2 patients, with one patient with MDS maintaining a durable response for 11 cycles before progressing. APVO436 was tolerated across all dose regimens in all cohorts tested. The most common adverse events (AEs), regardless of causality, were edema (32%), diarrhea (29%), febrile neutropenia (29%), fever (25%), hypokalemia (25%), IRR (21%), CRS (18%), chills (18%), and fatigue (18%). AEs ≥ Grade 3 occurring in more than one patient were: febrile neutropenia (25%), anemia (18%), hyperglycemia (14%), decreased platelet count (11%), CRS (11%), IRR (7%), and hypertension (7%). After observing a single dose limiting toxicity (DLT) at a flat dose of 9 µg, step dosing was implemented and no DLTs have been observed thereafter. No treatment-related anti-drug antibodies (ADA) were observed. Transient serum cytokine elevations occurred after several reported IRR and CRS events, with IL-6 most consistently elevated. Conclusions Preliminary results indicate that APVO436 is tolerated in patients with R/R AML and MDS at the doses and schedules tested to date, with a manageable safety profile. Dose escalation continues and the results will be updated for this ongoing study. Disclosures Watts: BMS: Membership on an entity's Board of Directors or advisory committees; Aptevo Therapeutics: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Rafael Pharma: Membership on an entity's Board of Directors or advisory committees; Jazz: Membership on an entity's Board of Directors or advisory committees; Genentech: Membership on an entity's Board of Directors or advisory committees. Lin:Ono Pharmaceutical: Research Funding; Pfizer: Research Funding; Abbvie: Research Funding; Bio-Path Holdings: Research Funding; Astellas Pharma: Research Funding; Aptevo: Research Funding; Celgene: Research Funding; Genetech-Roche: Research Funding; Celyad: Research Funding; Prescient Therapeutics: Research Funding; Seattle Genetics: Research Funding; Mateon Therapeutics: Research Funding; Jazz: Research Funding; Incyte: Research Funding; Gilead Sciences: Research Funding; Trovagene: Research Funding; Tolero Pharmaceuticals: Research Funding. Wang:Abbvie: Consultancy; Macrogenics: Consultancy; Astellas: Consultancy; Jazz Pharmaceuticals: Consultancy; Bristol Meyers Squibb (Celgene): Consultancy; PTC Therapeutics: Consultancy; Stemline: Speakers Bureau; Genentech: Consultancy; Pfizer: Speakers Bureau. Mims:Leukemia and Lymphoma Society: Other: Senior Medical Director for Beat AML Study; Syndax Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Kura Oncology: Membership on an entity's Board of Directors or advisory committees; Novartis: Speakers Bureau; Agios: Consultancy; Jazz Pharmaceuticals: Other: Data Safety Monitoring Board; Abbvie: Membership on an entity's Board of Directors or advisory committees. Cull:Aptevo Therapeutics: Research Funding. Patel:Agios: Consultancy; Celgene: Consultancy, Speakers Bureau; DAVA Pharmaceuticals: Honoraria; France Foundation: Honoraria. Shami:Aptevo Therapeutics: Research Funding. Walter:Aptevo Therapeutics: Research Funding. Cogle:Aptevo Therapeutics: Research Funding; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Chenault:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Macpherson:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Chunyk:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. McMahan:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Gross:Aptevo Therapeutics: Current Employment, Current equity holder in publicly-traded company. Stromatt:Aptevo Therapeutics: Current equity holder in publicly-traded company.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-32
Author(s):  
Daniel J. Coleman ◽  
Brittany M. Smith ◽  
Cody Coblentz ◽  
Rowan L. Callahan ◽  
Jake VanCampen ◽  
...  

Internal Tandem Duplication mutations of Fms Related Receptor Tyrosine Kinase 3 (FLT3), known as FLT3-ITD mutations, are associated with poor prognosis in Acute Myeloid Leukemia (AML). The clinical efficacy of inhibiting FLT3 in AML is limited by the rapid development of drug resistance and relapse, underscoring a need for more potent and durable treatment strategies. The early persistence of leukemic blasts during FLT3 inhibition is a key driver of resistance. We find that in combination, inhibitors of Lysine Specific Demethylase 1 (LSD1) potentiate the activity of FLT3 inhibitors, driving synergistic cell death. This novel therapeutic approach has the potential to drive deeper therapeutic responses in FLT3-Mutant AML, delaying or preventing the development of resistance. LSD1 is a dynamic DNA-associated protein that functions as a chromatin modifier and transcription factor. LSD1 removes methylation on both lysine 4 of histone H3 (H3K4), associated with transcriptional activation, and lysine 9 (H3K9), associated with transcriptional repression. Additionally, LSD1 has been reported to function as a transcription factor independent of its catalytic demethylase function. LSD1 inhibition reduces cell proliferation in several cancer types. In AML specifically, inhibition of LSD1 has been reported to activate enhancers associated with genes that promote differentiation. We hypothesized that combining LSD1 inhibition with FLT3 inhibition in FLT3-ITD AML would result in synergistic effects on cell viability through reactivating differentiation pathways and more strongly blocking proliferation. In this study, we aimed to examine the efficacy, transcriptional effects, and changes in chromatin dynamics when combining LSD1 inhibition with FLT3 inhibition in a FLT3-ITD mutant cell line and patient samples. We used matrix combination screening to determine that combining the FLT3 inhibitor Quizartinib with LSD1 inhibitors (GSK-2879552 or ORY-1001) synergistically represses cell viability in the FLT3-ITD mutant MOLM-13 cell line and in multiple primary AML samples. RNA-seq followed by Gene Set Enrichment Analysis revealed that combining LSD1 and FLT3 inhibition synergistically represses target genes of the oncogenic transcription factor MYC. This finding was corroborated through high-throughput genome-wide profiling of histone marks, using the recently developed technique Cleavage Under Targets and Tagmentation (CUT&Tag). Specifically, we discovered several promoter regions in which acetylation of lysine 27 of Histone H3 (H3K27Ac), associated with transcriptional activation, was repressed by combining LSD1 and FLT3 inhibition. The genes associated with these regions were strongly enriched for known MYC target genes. Through additional genomic profiling methods including ChIP-seq and ATAC-seq, we have established potential roles for several DNA-binding transcription factors including CEBPA, RUNX1, STAT5, and LSD1 itself, that may mediate repression of MYC function resulting from combining LSD1 and FLT3 inhibition. Together, our work establishes LSD1 and FLT3 inhibitor combinations as a promising treatment strategy in FLT3-ITD AML. Importantly, this study identifies combined FLT3 and LSD1 inhibition as an effective strategy to indirectly target MYC function, as MYC is often referred to as an "undruggable" target. Furthermore, it has the potential to drive deeper molecular responses in FLT3-mutant AML, decreasing the likelihood of treatment resistance. Disclosures Druker: Bristol-Myers Squibb: Research Funding; Blueprint Medicines: Consultancy, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees; ARIAD: Research Funding; Cepheid: Consultancy, Membership on an entity's Board of Directors or advisory committees; Third Coast Therapeutics: Membership on an entity's Board of Directors or advisory committees; VB Therapeutics: Membership on an entity's Board of Directors or advisory committees; Millipore (formerly Upstate Biotechnology): Patents & Royalties; Pfizer: Research Funding; The RUNX1 Research Program: Membership on an entity's Board of Directors or advisory committees; Gilead Sciences: Consultancy, Membership on an entity's Board of Directors or advisory committees; Vivid Biosciences: Membership on an entity's Board of Directors or advisory committees; Patient True Talks: Consultancy; Oregon Health & Science University: Patents & Royalties; Novartis Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; MolecularMD (acquired by ICON): Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Henry Stewart Talks: Patents & Royalties; Iterion Therapeutics (formerly Beta Cat Pharmaceuticals): Membership on an entity's Board of Directors or advisory committees; Aptose Therapeutics Inc. (formerly Lorus): Consultancy, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Merck & Co: Patents & Royalties; GRAIL: Consultancy, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees; Aileron Therapeutics: Membership on an entity's Board of Directors or advisory committees; McGraw Hill: Patents & Royalties; Leukemia & Lymphoma Society: Research Funding; ALLCRON: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Dana-Farber Cancer Institute: Patents & Royalties; EnLiven: Consultancy, Research Funding. Maxson:Gilead Sciences: Research Funding; Ionis Pharmaceuticals: Other: Joint oversight committee for a collaboration between OHSU and Ionis Pharmaceuticals.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3896-3896
Author(s):  
Yehuda E. Deutsch ◽  
Robert Wilkinson ◽  
Amanda Brahim ◽  
Stephanie Boisclair ◽  
Jose Sandoval-Sus ◽  
...  

Introduction: Acute myeloid leukemia (AML) is a heterogeneous disease with varied outcomes dependent on patient cytogenetic and mutational status. Thirty percent of adults with newly diagnosed AML have a mutation in the fms-related tyrosine kinase 3 (FLT3) gene. Midostaurin is a small molecule inhibitor that acts on multiple receptor tyrosine kinases, including FLT3. The RATIFY trial showed improved overall survival (OS) and event-free survival in patients treated with daunorubicin and cytarabine (7+3) plus midostaurin (Stone et al, NEJM 2017). In this trial, a dose of daunorubicin 60 mg/m2 was administered. High dose (HD) 90 mg/m2 daunorubicin significantly improved the rate of complete remission and overall survival, including in patients with FLT3-ITD (Luskin et al, Blood 2016). HD daunorubicin has also been shown to be more effective than idarubicin in patients with FLT3-ITD AML (Lee et al, J Clin Oncol 2017). This data raises the question of whether the combination of midostaurin and HD daunorubicin would further improve outcomes of FLT3 mutated AML patients, while maintaining a tolerable safety profile. The objective of this study is to describe the safety and efficacy endpoints of FLT3 mutated AML patients treated with HD daunorubicin plus midostaurin as part of induction therapy. Methods: We retrospectively reviewed clinical and molecular data of patients at Memorial Healthcare System, Moffitt Cancer Center, and Sylvester Cancer Center with newly diagnosed FLT3 mutated AML treated from May 1st, 2017 to July 1st, 2019. Clinical data was abstracted in accordance with institutional review board approved protocol. All patients were induced with HD daunorubicin 90 mg/m2 on days 1-3, cytarabine 100 mg/m2 on days 1-7, and midostaurin 50 mg PO twice daily on days 8-21. Growth factor and antimicrobial support were used per institutional guidelines. Demographics were analyzed using descriptive statistics. OS was analyzed using Kaplan Meier method. Other efficacy outcomes were CR, CRi (assessed according to the European Leukemia Network Criteria for AML), proportion of patients needing re-induction, and proportion of patients who underwent hematopoietic stem cell transplant (HSCT). Safety outcomes were adverse events (AEs) and early (30- and 60-day) mortality. Results: Twenty-six patients were included in the final analysis. Patient characteristics are outlined in TABLE 1. All patients were FLT3 mutated, as confirmed with molecular studies. The FLT3 subtype was ITD (high) in 3 patients, ITD (low) in 16 patients, TKD in 5 patients, and both in 2 patients. Seventy-seven percent of patients achieved a CR/CRi after one induction cycle, and 96.2% attained CR after two induction cycles. Median time to ANC and platelet recovery was 28 and 26 days, respectively. One patient died during the first 60 days, due to Enterococcus sepsis. The most common non-hematological AEs were nausea (77%), diarrhea (62%), mucositis (58%), rash (54%), and increased ALT (54%). Cumulative incidence of relapse in the cohort was 28% (n=7). Four patients relapsed pre-transplant and achieved CR2 with additional therapy. All 7 of these patients had co-occurring mutations of various types. Of the 20 patients who were considered transplant eligible, 13 (65%) underwent HSCT and 4 (20%) are pending transplant. Of the 13 transplanted patients, 3 experienced relapse post-transplant. After a median follow up of 14.5 months, median OS has not been reached. Conclusion: In our multi-center experience, induction with HD daunorubicin, cytarabine, and midostaurin is clinically effective and seems to be well tolerated. Short term mortality was low and AEs were manageable, with no unexpected safety signals. Also, CR/CRi rates were higher than previously reported, suggesting that the combination of HD daunorubicin and midostaurin may improve the outcomes of patients with FLT3 mutated AML. Future analyses with larger patient samples and longer follow up are warranted to further evaluate long-term safety and efficacy for this regimen. Figure Disclosures Sandoval-Sus: Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Bradley:AbbVie: Other: Advisory Board. Talati:Agios: Honoraria; Celgene: Honoraria; Pfizer: Honoraria; Astellas: Honoraria, Speakers Bureau; Daiichi-Sankyo: Honoraria; Jazz Pharmaceuticals: Honoraria, Speakers Bureau. Watts:Pfizer: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees. Sallman:Abbvie: Speakers Bureau; Novartis: Speakers Bureau; Jazz: Research Funding; Incyte: Speakers Bureau; Celyad: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding, Speakers Bureau. Sweet:Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Speakers Bureau; Jazz: Speakers Bureau; Incyte: Research Funding; Pfizer: Consultancy; Stemline: Consultancy; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Abbvie: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees. Lancet:Daiichi Sankyo: Consultancy, Other: fees for non-CME/CE services ; Agios, Biopath, Biosight, Boehringer Inglheim, Celator, Celgene, Janssen, Jazz Pharmaceuticals, Karyopharm, Novartis: Consultancy; Pfizer: Consultancy, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5089-5089 ◽  
Author(s):  
Varun Mittal ◽  
Mimi Lo ◽  
Lloyd E. Damon ◽  
Karin L. Gaensler ◽  
Thomas G. Martin ◽  
...  

Introduction: Venetoclax (VEN), a selective BCL-2 inhibitor, in combination with hypomethylating agents (HMA) has high efficacy in treatment-naïve elderly patients with acute myeloid leukemia (AML). The role for VEN in patients with relapsed/refractory (R/R) AML, myelodysplastic syndrome (MDS), or other myeloproliferative neoplasms remains incompletely defined. In particular, the efficacy of VEN+HMA has not been studied systematically in patients who experience AML relapse following allogeneic hematopoietic cell transplantation (HCT). Method: All patients treated with VEN+HMA (azacitidine or decitabine) for R/R de novo or secondary AML or progressive MDS following allogeneic HCT were identified and reviewed retrospectively. All included AML patients had overt clinical relapse with ≥ 5% bone marrow blasts or extramedullary disease biopsy proven to be AML. Patients were included in this analysis if they received at least 14 days of VEN therapy. Results: Eleven patients with median age 66 (range 25-75) were treated for R/R AML post-allogeneic HCT. Transplant characteristics included use of reduced intensity conditioning in 10/11 (91%), matched sibling donors in 5/11 (45%), matched unrelated donors in 5/11 (45%), and cord blood in 1/11 patients. The median time from HCT to relapse/disease progression was 7 months (range 3-36). Two patients had extramedullary relapse only, and the remainder had marrow involvement. Eight patients (73%) received azacitidine and 3 (27%) received decitabine in combination with VEN. All but two patients (82%) had prior HMA exposure and most received VEN+HMA as initial post-transplant salvage therapy (64%). Only one patient received donor lymphocyte infusion in conjunction with VEN+HMA therapy, and none proceeded to a second allotransplant. Nine patients (82%) experienced an objective response, which included 4 CR/CRi (36%) and 5 PR/SD (45%). In patients with CR/CRi, three patients had adverse risk cytogenetics and one had a favorable risk profile at diagnosis consisting of normal cytogenetics with an isolated NPM1 mutation. All patients who failed to remit with VEN+HMA had intermediate- or high-risk genetic features. The median number of treatment cycles given was 3 (range 1-20). Median survival was 11 months and estimated 6-month and 12-month survival was 82% and 36%, respectively. Three patients remain alive with median 16.5 months follow-up (range 2.5-32). Conclusion: Venetoclax in combination with HMA is a viable salvage option in patients with relapsed AML or progressive MDS after allogeneic HCT, including those with prior exposure to HMA. Although one patient in this cohort sustained long term complete remission, overall prognosis remains dismal in this high-risk patient population and improved treatment options for relapsed/refractory AML following alloHCT remain needed. Disclosures Damon: Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. Martin:Amgen, Sanofi, Seattle Genetics: Research Funding; Roche and Juno: Consultancy. Olin:MedImmune: Research Funding; Ignyta: Research Funding; Clovis: Research Funding; AstraZeneca: Research Funding; Revolution Medicine: Consultancy; Daiichi Sankyo: Research Funding; Astellas: Research Funding; Genentech: Consultancy, Research Funding; Pfizer: Research Funding; Jazz Pharmaceuticals: Consultancy, Honoraria; Novartis: Research Funding; Mirati Therapeutics: Research Funding; Spectrum: Research Funding. Smith:Astellas Pharma: Research Funding; Abbvie: Research Funding; fujiFilm: Research Funding; Revolution Medicines: Research Funding. Logan:Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy; Pharmacyclics: Research Funding; Astellas: Research Funding; Jazz: Research Funding; Kite: Research Funding; Incyte: Membership on an entity's Board of Directors or advisory committees; TeneoBio: Consultancy; Kiadis: Consultancy; Kadmon: Research Funding; Abbvie: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 24-25
Author(s):  
Franco Locatelli ◽  
Gerhard Zugmaier ◽  
Noemi Mergen ◽  
Peter Bader ◽  
Sima Jeha ◽  
...  

Introduction: The open-label, expanded access study (RIALTO) demonstrated that blinatumomab is efficacious with a manageable safety profile in children with relapsed or refractory B-cell precursor acute lymphoblastic leukemia (R/R BCP-ALL). Blinatumomab is a BiTE® (bispecific T-cell engager) immuno-oncology therapy that activates cytotoxic T cells to kill target B cells. Here, findings from the final analysis of RIALTO are presented (NCT02187354). Methods: Enrolled in the study were children &gt;28 days and &lt;18 years of age with R/R CD19+ BCP-ALL (defined as ≥2 relapses, relapse after allogeneic hematopoietic stem cell transplant [alloHSCT], or refractory to prior treatments) and ≥5% blasts or &lt;5% blasts but with minimal residual disease (MRD) level ≥10−3. Blinatumomab was given as continuous infusion in a 6-week cycle (4 weeks on and 2 weeks off) for up to 5 cycles and safety follow-up visit 30 days post-treatment. Patients with &lt;25% blasts were dosed at 15 µg/m2/day, whereas those with ≥25% blasts were dosed at 5 µg/m2/day (days 1-7 of cycle 1) followed by dose increase to 15 µg/m2/day. Primary endpoint was incidence of treatment-emergent (TE) and treatment-related (TR) adverse events (AEs). Secondary endpoints included complete response (CR; &lt;5% blasts) and MRD response (&lt;10−4 blasts by PCR or flow-cytometry) in the first 2 cycles, relapse-free survival (RFS), overall survival (OS), and alloHSCT rate after blinatumomab treatment. Results: As of the data cutoff date (January 10, 2020) for the final analysis, demographics and baseline characteristics of 110 patients enrolled (median age, 8.5 years [95% CI 0.4-17.0]), 61% had &lt;50% blasts at baseline, and 11% had &lt;5% blasts (n=12; with MRD ≥10−3) remain unchanged compared with the primary analysis (Table 1). For best treatment response within the first 2 cycles, results are comparable to that of the primary analysis. Among 110 patients, overall CR rate was 62.7% (n= 69). Of 98 patients with ≥5% blasts at baseline, 59% (n=58) achieved CR; of them, 79% (n=46) achieved an MRD response and 62% (n=39) proceeded to HSCT. The 2 patients with t(17;19) achieved CR with an MRD response. Of the 4 patients with germline trisomy 21 (Down syndrome), 3 achieved CR with an MRD response Among the 12 patients with &lt;5% blasts but with MRD ≥10−3 at baseline, 92% (n=11) achieved CR and MRD response; 75% (n=9) proceeded to HSCT (Table 2). Of the 5 patients who had received prior blinatumomab , 4 achieved CR. Of 110 patients treated with blinatumomab, median OS (95% CI) was 14.6 (11-24.5) months with median follow-up time of 18.2 months, which increased by 1.5 months compared with that reported in the primary analysis, with 29.9% of patients still surviving at month 24. Median RFS (95% CI) remains unchanged at 8.5 months (4.7-14.0), with a median follow-up time of 11.5 months in patients who achieved CR; 38% of patients relapsed and 9% died. RFS was more favorable for patients who received HSCT post blinatumomab (70%) than for those who did not (30%) at month 12, respectively, which is consistent with the results from primary analysis. Among patients who had HSCT prior to blinatumomab (n= 45), median OS (95%) was 16.6 (7.1-NE) months vs 14.6 (10.9-24.5) months in patients without HSCT prior to blinatumomab (n= 65). Compared with the primary analysis, 5 additional patients received HSCT after achieving CR in the final analysis. Median OS among patients in CR after HSCT by MRD responders vs MRD non-responders was NE at 15-month analysis (Figure). Safety results in the final analysis were consistent with those reported in the primary analysis. Of 110 patients, 99% experienced TEAEs, with 65% being grade ≥3 (see Table 3 for details). TRAEs were reported in 74% of patients; 26% were grade ≥3 and 19% were deemed serious. Details on grade ≥3 TRAEs are shown in Table 3. The 9 fatal AEs, unrelated to blinatumomab, occurred due to relapse and progressive nature of the disease (Table 3). Conclusions: Overall, the safety and efficacy results from the final analysis are consistent with those reported in the primary analysis as no new safety signals were observed. These findings strengthen the observation that blinatumomab demonstrates durable efficacy and is a suitable treatment option in children with R/R BCP-ALL. Table 1. Disclosures Locatelli: Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Medac: Speakers Bureau; Miltenyi: Speakers Bureau; Bellicum Pharmaceutical: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceeutical: Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Zugmaier:Amgen: Current Employment, Other: Personal Fees ; 20190300609: Patents & Royalties: Licensed patient . Mergen:Amgen: Current Employment, Current equity holder in publicly-traded company. Bader:Medac: Patents & Royalties, Research Funding; Amgen: Consultancy, Speakers Bureau; Neovii: Research Funding; Celgene: Consultancy; Novartis: Consultancy, Speakers Bureau; Riemser: Research Funding. Schlegel:bluebird bio: Honoraria. Bourquin:Servier: Other: Travel Support. Handgretinger:Amgen: Honoraria. Brethon:Amgen: Other: invitation to meetings, remunerations for oral presentations, advices for the record of Blinatumomab in pediatrics in France. Rössig:Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Honoraria; Pfizer: Honoraria; Celgene: Membership on an entity's Board of Directors or advisory committees; EUSA Pharma: Membership on an entity's Board of Directors or advisory committees; Genetech: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Kormany:Amgen: Current Employment, Current equity holder in publicly-traded company. Viswagnachar:IQVIA: Current Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 996-996 ◽  
Author(s):  
Antonio Palumbo ◽  
Alessandra Larocca ◽  
Sonja Zweegman ◽  
Giulia Lupparelli ◽  
Agostina Siniscalchi ◽  
...  

Abstract Abstract 996 Background: The risk of developing a tumor is 2.1% per year of life in the general population older than 65 years. In MGUS, the incidence of AML/MDS is increased 8 fold compared with normal population, this observation supports a role for non-treatment related factors in the causation of AML/MDS in plasma-cell dyscrasias (Blood, July 27,2011). In multiple myeloma (MM) patients, the risk of second primary malignancy (SPM) is influenced by age and the use of alkylating agents. Methods: We examined SPM incidence rates (IRs) per 100 person-years in 2459 newly diagnosed MM patients, enrolled in 9 experimental trials of the European Myeloma Network (RVMM EMN 01, RVMM EMN 441, RVMM PI 026, RVMM PI 302, RVMM PI 209, GIMEMA MM 03 05, GIMEMA MM 04 05, GISMM 2001, HOVON 87). 287 patients received cyclophosphamide-lenalidomide-corticosteroids (CRC), 685 melphalan-prednisone-lenalidomide (MPR), 484 high-dose melphalan followed by lenalidomide maintenance (MEL200-R), 164 melphalan-prednisone (MP), 328 MP-thalidomide (MPT), 257 MP-bortezomib (MPV), 254 MP-bortezomib-thalidomide (VMPT). This post hoc analysis was restricted on pooled data from 1798 patients with at least 1 year of follow-up. Results: As of March 2011 cut-off, median follow-up was 28 months. Median age was 69 years, 49% of patients were aged 65–74 years, and 19% aged ≥75 years. Total cases of SPMs were 30/1798 (IR 0.72), including 8 hematologic (acute leukemia) and 22 solid cancers (gastrointestinal, lung, breast, skin, gynecologic). No cases of SPMs were reported in patients receiving cyclophosphamide and lenalidomide. SPM: second primary malignancy; CRC: cyclophosphamide-lenalidomide-corticosteroids; MPR: melphalan-prednisone-lenalidomide; MEL200-R: high-dose melphalan followed by lenalidomide maintenance; MP: melphalan-prednisone; MPT: MP-thalidomide; MPV: MP-bortezomib; VMPT: MP-bortezomib-thalidomide In patients receiving lenalidomide and alkylating agents (CRC/MPR/MEL200-R), the cumulative incidence of death for MM and diagnosis of SPMs at 3 years was 13.8% and 2.0%, respectively. In patients not receiving lenalidomide (MP/MPT/MPV/VMPT), the cumulative incidence of death and SPMs at 3 years was 26.1% and 1.1%, respectively. In the analysis restricted to Italian patients treated with lenalidomide and alkylating agents, we report 11 cases of SPMs. This figure is lower than the 15.6 cases expected from the age/sex adjusted incidence derived form the Italian Cancer Registry, with a standardized incidence ratio of 0.70. Conclusions: SPM incidence was lower than expected in all treatment groups. At present, the benefits of continuous therapy with lenalidomide outweigh the potential risk of SPMs. Longer follow-up is needed to definitively assess the risk of SPMs in patients receiving lenalidomide with alkylating agents. With the limitation of a short follow-up, the numbers currently support a role for non-treatment related factors as causes of SPMs. Updated data will be presented at the meeting. Disclosures: Palumbo: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Merck: Honoraria; Amgen: Honoraria. Larocca:Janssen-Cilag: Honoraria. Zweegman:Celgene: Honoraria, Research Funding; Janssen-Cilag: Honoraria, Research Funding. Musto:Celgene: Consultancy, Honoraria, Research Funding. Lokhorst:Celgene: Consultancy; Genmab: Consultancy. Ria:celgene: Consultancy. Patriarca:Celgene: Honoraria; Schering-Plough: Honoraria. Bringhen:Celgene: Honoraria; Janssen-Cilag: Honoraria; Novartis: Honoraria; Merck Sharp & Dhome: Membership on an entity's Board of Directors or advisory committees. Hajek:Merk: payment for educational presentation; celgene: Honoraria; Janssen-Cilag: Honoraria. Spencer:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Boccadoro:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen-Cilag: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Sonneveld:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen-Cilag: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document