scholarly journals Immunogenomics of Paroxysmal Nocturnal Hemoglobinuria: A Model of Immune Escape

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 21-22
Author(s):  
Carmelo Gurnari ◽  
Simona Pagliuca ◽  
Cassandra M Kerr ◽  
Hassan Awada ◽  
Sunisa Kongkiatkamon ◽  
...  

Unlike leukemic driver mutations, PIGA mutations produce an escape phenotype in the context of immune-mediated bone marrow failure such as aplastic anemia (AA). Another way to create clinical advantage will be to disable HLA-mediated cytotoxic T cell recognition. Determinants of cytotoxic T cell response might include some accessories glycosylphosphoinositol (GPI)-linked moieties but the main stimulus is likely to be provided by HLA-presented antigenic peptides. Somatic hits in HLA genomic region (microdeletions, uniparental disomies [UPDs] of HLA locus on 6p and later mutations) have been previously assessed in AA patients [1-3]. Mechanistic analogy to immune-privileged GPI-anchor protein deficiency in PNH due to PIGA mutations[4] or deletion[5] of PIGA locus are obvious. We stipulate that HLA mutations may contribute to the intrinsic expansion of PNH clones under immune pressure being: i) additive to the effects of PIGA mutations in creating immune escape or ii) redundant and thus less frequent in PNH clones as in patients without PIGA mutation. Using a deep targeted-sequencing panel covering HLA classical loci, and applying an in-house newly developed pipeline for the study of the HLA region (AbstractID#142501), we detected class I/II HLA somatic mutations of 10 patients with PNH. An integrative mutational analysis of PIGA and myeloid genes was then performed in order to comprehensively evaluate the role of HLA somatic hits within the scenario of PNH clonal evolution. At the time of this submission HLA sequencing was completed for a total of 35 patients but full analysis is available for the first 10 cases. Overall, of these 10 PNH patients 20 samples were analyzed from sorted GPI(+) and GPI(-) myeloid fractions (mean purity >95%). Median age at diagnosis was 36 years (11-66) while median PNH granulocyte clone size at time of sampling was 76% (5.11-99). A total of 41 PIGA mutations (Fig.1A) were detected solely in the GPI(-) fraction (mean VAF 58%), with 8 patients harboring clonal mosaicism as previously described.[6] Six somatic mutations of HLA class I (N=3, Fig.1B) and class II (N=3, Fig.1C) loci were found in 4 patients (67% detected on GPI(+) and 33% on GPI(-) fraction) at a low VAF (mean 3.36%). All these events were insertions or deletion of one or more bases. Class I mutations were located in intron 5, exon 3 and 3' untranslated regions (UTR). Class II were found instead in exon 2 (N=2) and intron 4. A functional and topographical annotation based on IPD-IMGT/HLA database suggested that exonic mutations were disruptive, impairing the bio-functionality of antigen presentation site. The detected intronic mutations instead impair HLA moiety assembling within cellular membrane, possibly altering splicing of the transmembrane domain. Moreover, a computational prediction of the regulatory domains involved in the 3'UTR aberration, showed a possible involvement of the miRNA has-miR-4524a-3p binding site, potentially affecting HLA post-transcriptional regulation. Of note, in 1 patient (UPN 9, Fig.1D) we did not find any PIGA, PIGT or HLA mutation. Finally, myeloid gene mutations analysis revealed the presence of a subclonal ASXL1 mutation in 1/10 patients in the GPI(-) fraction. Of note, this patient (UPN 1) had older age and showed 12 different somatic PIGA hits. This finding is probably explicable with the scenario of PIGA as the initial ancestral event accompanied by secondary mutations previously shown by our group as occurring in 10% of PNH cases in the course of disease evolution.[7-8] In summary, somatic HLA class I/II mutations can be found in patients with PNH. HLA mutations can occur in GPI(+) cells in subclonal fashion but also in GPI(-) cells. The latter clonal mosaicism indicates that various mechanisms of immune escape may play a role. Subclonal HLA mutations may impact the immune pressure on PNH clone dynamics, reflecting an alternative immune escape pathway in patients without PNH clone. (Fig.1E) In addition, detection of occasional "myeloid" hits suggests that various modes of PNH clone maintenance and expansion may be operative. We will present at ASH analysis of a full cohort of these patients including properly powered clinical correlations. Figure 1 Disclosures Maciejewski: Novartis, Roche: Consultancy, Honoraria; Alexion, BMS: Speakers Bureau.

2021 ◽  
Author(s):  
Alexandru Tîrziu ◽  
Virgil Păunescu

AbstractThis paper presents an alternative vaccination platform that provides long-term cellular immune protection mediated by cytotoxic T-cells. The immune response via cellular immunity creates superior resistance to viral mutations, which are currently the greatest threat to the global vaccination campaign. Furthermore, we also propose a safer, more facile and physiologically appropriate immunization method using either intra-nasal or oral administration. The underlying technology is an adaptation of synthetic long peptides (SLPs) previously used in cancer immunotherapy. SLPs comprising HLA class I and class II epitopes are used to stimulate antigen cross-presentation and canonical class II presentation by dendritic cells. The result is a cytotoxic T cell-mediated prompt and specific immune response against the virus-infected epithelia and a rapid and robust virus clearance. Peptides isolated from COVID-19 convalescent patients were screened for the best HLA population coverage and were tested for toxicity and allergenicity. 3D peptide folding followed by molecular docking studies provided positive results, suggesting a favourable antigen presentation.


2000 ◽  
Vol 74 (21) ◽  
pp. 10240-10244 ◽  
Author(s):  
A. H. Brandenburg ◽  
L. de Waal ◽  
H. H. Timmerman ◽  
P. Hoogerhout ◽  
R. L. de Swart ◽  
...  

ABSTRACT Virus-specific cytotoxic T lymphocytes (CTL) play a major role in the clearance of respiratory syncytial virus (RSV) infection. We have generated cytotoxic T-cell clones (TCC) from two infants who had just recovered from severe RSV infection. These TCC were functionally characterized and used to identify HLA class I (B57 and C12)-restricted CTL epitopes of RSV.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5012-5012 ◽  
Author(s):  
Juliane S. Stickel ◽  
Claudia Berlin ◽  
Daniel J. Kowalewski ◽  
Lothar Kanz ◽  
Helmut R. Salih ◽  
...  

Abstract CD4+ T cells are crucial for the induction and maintenance of cytotoxic T cell responses, but can also mediate direct tumor rejection. The therapeutic efficacy of peptide-based cancer vaccines may thus be improved by including HLA class II epitopes to stimulate T helper cells. In contrast to HLA class I ligands, only a small number of class II ligands of TAA has been described so far. We recently reported on the overexpression of HLA class II in AML cells as compared to autologous monocytes and granulocytes as well as on the first HLA class I leukemia associated antigens identified directly on the cell surface of primary AML cells (Stickel et. al. abstract in Blood 2012). In this study we characterized the HLA class II ligandome in AML to identify additional ligands for a peptide-based immunotherapy approach. HLA class II ligands from primary AML cells as well as bone marrow and peripheral blood mononuclear cell (BMNCs/PBMCs) of healthy donors were analyzed using the approach of direct isolation and identification of naturally presented HLA peptides by affinity chromatography and mass spectrometry (LC-MS/MS). LC-MS/MS peptide analysis provided qualitative and semi-quantitative information regarding the composition of the respective ligandomes. Comparative analysis of malignant and benign samples served to identify ligandome-derived tumor associated antigens (LiTAAs) and to select peptide vaccine candidates. Most abundantly detected peptides were functionally characterized with regard to their ability to induce a specific CD4+ T-cell response in healthy donors and in tumor patients using ELISpot. Samples from 10 AML patients (5 FLT3-ITD mutated) and 18 healthy donors were analyzed. We identified more than 2,100 AML-derived HLA class II ligands representing >1,000 different source proteins, of which 315 were exclusively represented in AML, but not in healthy PBMC/BMNC. Data mining for broadly represented LiTAAs pinpointed 26 HLA class II ligands from 8 source proteins that were presented exclusively on more than 40% of all analyzed AML samples as most promising targets. Amongst them were already described TAAs (e.g., RAB5A) as well as several so far understated proteins (e.g. calsyntenin 1, glycophorin A, mannose-binding lectin 2). Subset analysis revealed 58 LiTAAs presented exclusively on FLT3-ITD mutated AML cells. Additional screening for HLA class II ligands from described leukemia associated antigens showed positive results for NPM1 (1 peptide sequence) and MPO (13 peptide sequences). Peptides from calsyntenin 1 and RAB5A were able to elicit CD4+-T-cell response in 25% of tested AML patients (n=16). Thus, our study identified, for the first time, HLA class II tumor associated antigens directly obtained from the HLA ligandomes of AML patients and thereby represents a further step to our goal of developing a multipeptide vaccine for immunotherapy of AML. Disclosures: No relevant conflicts of interest to declare.


1992 ◽  
Vol 176 (1) ◽  
pp. 119-128 ◽  
Author(s):  
R S van Binnendijk ◽  
C A van Baalen ◽  
M C Poelen ◽  
P de Vries ◽  
J Boes ◽  
...  

The routes used by antigen-presenting cells (APC) to convert the transmembrane fusion glycoprotein (F) of measles virus (MV) to HLA class I and class II presentable peptides have been examined, using cloned cytotoxic T lymphocytes in functional assays. Presentation by Epstein-Barr virus-transformed B lymphoblastoid cell lines was achieved using live virus, ultraviolet light-inactivated virus, and purified MV-F delivered either as such or incorporated in immunostimulating complexes (MV-F-ISCOM). Only live virus and MV-F-ISCOM allow presentation by class I molecules, while all antigen preparations permit class II-restricted presentation. We observe presentation of MV-F from live virus and as MV-F-ISCOM by class II molecules in a fashion that is not perturbed by chloroquine. Our studies visualize novel presentation pathways of type I transmembrane proteins.


1994 ◽  
Vol 10 (9) ◽  
pp. 1061-1064 ◽  
Author(s):  
FRANCESCO PUPPO ◽  
SABRINA BRENCI ◽  
ELEONORA MONTINARO ◽  
LORELLA LANZA ◽  
PAOLA CONTINI ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3990-3990
Author(s):  
Benjamin Peton ◽  
Melissa Valerio ◽  
Michiko Taniguchi ◽  
Ivan Rodriguez ◽  
Ebtsesam Nafie ◽  
...  

Abstract Note: BP, MV and LG, KG contributed equally Background Relapsed acute myeloid leukemia (AML) remains the most common reason for allogeneic hematopoietic cell transplant (HCT) failure. Thus, understanding AML immune escape mechanism is important for improving the odds of curing HCT patients with AML. Downregulation of HLA Class I and II expression by AML is one of the potential immune escape mechanisms. Therefore, treatment to restore HLA surface expression is crucial to prevent and treat relapse. Endogenous cytokines, such as IFN-γ, have been shown to stimulate HLA expression but are poorly tolerated by patients. However, two hypomethylating agents (HMA), decitabine (Dec) and azacitadine (Aza), that are routinely used in AML treatment are known to augment HLA expression. For AML, HMAs are often combined with venetoclax (Ven), a drug that blocks the anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein. Thus, while HMAs have been reported to increase HLA expression, what is unknown is whether these agents impact individual HLA loci differently and whether Ven has any impact on HLA expression. To address these questions, we treated the THP-1 cell line with Dec, Aza or Ven and measured changes in cell-surface expression of HLA proteins by flow cytometry using locus-specific HLA mAbs. Methods THP-1 cells were incubated with IFN-γ (500 U/mL), Aza (2µM), Dec (5µM), or Ven (30nM) for 48 hours (drug concentrations were determined by earlier titration experiments). THP-1 cells are a monocytic cell line, derived from the peripheral blood of a childhood case of acute monocytic leukemia (M5 subtype), that express HLA Class I and HLA-DR but not HLA-DQ or -DP under basal conditions, although they are inducible by IFN-γ. Thus, the induction of HLA Class II expression by IFN-γ serves as a positive control. Isotype controls were included to measure background. Data is presented as the difference in MFI (delta MFI) between cells treated with a drug and those treated with diluent only. Results Treatment of THP-1 cells with either IFN-γ or Dec led to increases in Class I HLA-A, -B & -C (Figure 1) compared to untreated cells (a mean fold increase of 1.4 and 1.2, respectively). Notably, Aza did not stimulate additional HLA-C expression and induced less of an increase in HLA-A & -B expression (an increase of 1.1-fold) than IFN-γ or Dec. Treatment of THP-1 cells by Ven did not induce a change in HLA Class I expression. For Class II, IFN-γ or Dec increased HLA-DR, -DQ and -DP expression in comparison to untreated cells (Figure 1). IFN-γ induced greater HLA-DR expression compared to Dec (an increase of 2.3-fold and 1.5-fold, respectively), and both stimulated similar increases in HLA-DQ (increases of 1.5-fold and 1.4-fold, respectively) & -DP (increases of 1.9-fold and 1.5-fold, respectively). However, treatment of cells with either Aza or Ven did not lead to changes in HLA Class II expression. Discussion Previous studies have illustrated the ability of IFN-γ to induce HLA Class II expression in THP-1 cells, however, data for Dec to induce HLA Class II expression was unconfirmed. We report differences in the degree to which IFN-γ and Dec are capable of stimulating HLA-DR with IFN-γ being more potent. The inability of Aza to induce HLA Class II expression in THP-1 cells may be related to the differing drug activating pathways of the two HMAs. Indeed, there are conflicting reports as to whether Aza can stimulate HLA Class II expression. Though Ven treatment of THP-1 cells did not impact HLA expression, because it is given with HMAs, it remains to be seen what effect these drugs may have on HLA expression when administered together. Additional studies to confirm these observations in patient-derived AML blasts are ongoing. Conclusion We report that HMAs increased expression of HLA-A, -B, & -C loci and Dec but not Aza stimulated HLA-DR, -DQ, and -DP expression in THP-1 cells. Given these data, Dec may be superior in increasing HLA Class II expression post-HCT. Figure 1 Figure 1. Disclosures Marcucci: Abbvie: Other: Speaker and advisory scientific board meetings; Agios: Other: Speaker and advisory scientific board meetings; Novartis: Other: Speaker and advisory scientific board meetings. Al Malki: Neximmune: Consultancy; CareDx: Consultancy; Jazz Pharmaceuticals, Inc.: Consultancy; Rigel Pharma: Consultancy; Hansa Biopharma: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-21
Author(s):  
Simona Pagliuca ◽  
Carmelo Gurnari ◽  
Hassan Awada ◽  
Cassandra M Kerr ◽  
Bhumika J. Patel ◽  
...  

Downregulation of class I human leukocyte antigen (HLA)-restricted antigen presentation has been identified as mechanism of immune-escape in many malignant and non-malignant disorders. In idiopathic aplastic anemia (AA), evolution of immune-privileged paroxysmal nocturnal hemoglobinuria (PNH) clones has been attributed to immune escape due to deficiency of GPI-anchored protein in the context of T-cell mediated autoimmunity. However, other mechanisms of clonal selection may also operate with or independently of PNH. Our group first described the presence of both somatic uniparental disomy (UPD) and microdeletions of the HLA region leading to loss of heterozygozity (LOH) and/or haploinsuffciency.1 Later the proof-of-concept of somatic mutations in HLA class I was provided.2 Mechanistically, HLA LOH leads to loss of an allele involved in the presentation of immune-dominant peptides, while haploinsufficiency may decrease the presentation threshold. Moreover, the general level of individual structural diversity of HLA molecules may determine the ability to present diverse targets, eventually derived from auto-antigens, and functionally would operate in the opposite direction to HLA LOH. In this scenario, we hypothesize that defects in both class I and II HLA loci may constitute different patterns of immune escape, reducing respectively CD8+ and CD4+ related activation and thus contributing to rescue hematopoietic stem cells from the immune attack. Furthermore, our idea is that the immune-escape environment may be related to the grade of HLA evolutionary divergence (HED), a metric that, accounting for the degree of structural diversity within a particular locus, represents an indirect measure of the antigenic landscape that the hematopoietic target cell is able to present (see abstract #:142693). Using a deep targeted HLA NGS panel and a newly developed in-house bioinformatic pipeline (characterized by stringent criteria for alignment, preprocessing and variant calling in the HLA region, based on the IPD IMGT/HLA database, Fig.A), we studied a large cohort of patients with idiopathic bone marrow failures (AA n=75, AA/MDS=10). In addition, we determined the impact of inter-loci HED on the probability to acquire somatic hits in HLA genes. Overall, 29 somatic HLA mutations were found in 16 patients (18%) at a median VAF of 11% (range: 2-93%):12 in class I (41%) and 17 in class II (59%), with 5 patients carrying mutations in both classes (Fig.B, C, D). The majority of those events (N=21, 72%) occurred in subjects also harbouring a PNH clone of small size (12 out 16 patients, median PNH clone size 1% [range:1-46%]). Most mutated loci were A and C for class I and DQB1 for class II (Fig. C, D); 9 mutations were identified as missense, with disruptive changes, 7 were intronic indels while 13 hits were localized in 5' or 3' untranslated regions (UTRs) (Fig.E, F). Through a computational prediction of the HLA regulatory domains involved in the UTR aberrations, we identified domains essential for the binding of GATA-1, RXRbeta, SP-1 and NFKB. The impairment of those regions may affect the transcription of HLA complexes. AA HLA mutant cases had more frequently a severe disease at diagnosis (severe AA: 81% vs. 60%, respectively in HLA mutated vs non mutated cases) and were in most part responders to immunosuppressive therapy (complete/partial responses: 75% vs 50% in HLA mutated vs non mutated patients). Within the AA/MDS group instead HLA mutations were found in 4 out of 10 patients (40%), including of note three -7/del7q cases. Using Pierini and Lenz algorithm3 to determine inter-class HED, we found that HLA mutations tended to occur more often in patients with a high inter-class mean HED (94% vs 72% in non mutated group, p=.001, Fig. G), consistent with the idea that higher structural diversity of HLA molecules may induce more pervasive auto-immune responses, stronger immune pressure and ultimately the establishment of immune-escape mechanisms. In summary, our results indicate the importance of class-I and -II HLA loci somatic hits as markers of autoimmunity and thereby the severity of the immune selection pressure, configuring possibly alternative mechanisms of immune-escape, in addition to immune privileged PNH clones. This environment may ultimately facilitate leukemic clonal expansion in AA-MDS setting. Disclosures Patel: Alexion: Other: educational speaker. Peffault De Latour:Apellis: Membership on an entity's Board of Directors or advisory committees; Alexion Pharmaceuticals Inc.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Amgen: Research Funding. Maciejewski:Novartis, Roche: Consultancy, Honoraria; Alexion, BMS: Speakers Bureau.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4046-4046 ◽  
Author(s):  
Annika Nelde ◽  
Heiko Schuster ◽  
Daniel J. Kowalewski ◽  
Lothar Kanz ◽  
Helmut R. Salih ◽  
...  

Abstract Several studies demonstrated that peptide-based cancer immunotherapy can induce specific immune responses and affect clinical outcome in a variety of different cancer entities. We recently conducted a study, which directly characterized the antigenic landscape of acute myeloid leukemia (AML) by mass spectrometric analysis of naturally presented HLA ligands and identified a panel of AML-specific CD4+ as well as CD8+ T-cell epitopes as suitable targets for T-cell based immunotherapy (Berlin et al. Leukemia 2015). One main reason for the high relapse rates in AML patients after standard polychemotherapy and allogeneic stem cell transplantation is the presence of minimal residual disease (MRD), which is associated with the persistence of leukemic stem cells (LSCs) in the bone marrow of patients. For clinically effective immunotherapy it is therefore indispensable to target the highly chemotherapy resistant LSCs. Here we present a mass spectrometry-based study, which for the first time analyzes the naturally presented HLA ligandome of stem cell enriched (LSCenr) fractions of primary AML samples to identify novel LSC-associated antigens using the approach of direct peptide isolation and identification. The enrichment of LSCs was performed using fluorescence-activated cell sorting of the originally described phenotype of lineage-negative CD34+CD38- cells of PBMCs from eight AML patients. The original stem cell containing population of 1-3% within the PBMCs of most patients was enriched to >90% purity with cell counts of 20-200x106 for the LSCenr fraction per sample. Consistent with our own previous results, all samples showed comparable expression levels of HLA class I molecules on primary leukemia blasts as well as for the LSCenr fractions, with HLA class I molecule counts ranging from 145,000 to 175,000 molecules/cell for the LSCenr fractions. To specifically identify leukemia-associated antigens on LSCenr cells, the HLA ligandome results obtained from the sorted LSCenrfractions were combined with data acquired from AML blasts of 20 AML patients (HLA class I n=19, HLA class II n=20) in previous studies as well as our normal tissue database that comprises 153 HLA class I and 82 HLA class II ligandomes of various healthy tissues (e.g. blood, bone marrow, spleen, kidney, liver, brain, skin, ovary, bowl). We identified more than 14,600 different naturally presented HLA class I ligands representing ̴6,500 source proteins on LSCenr fractions of primary AML samples (n=8) and their autologous blast cells by mass spectrometry. Overlap analysis of the HLA class I ligandomes of LSCenr fractions and autologous AML blasts with the benign peptidome revealed 45.4% (3,132/6,896) and 40.2% (4,922/12,244) of the LSCenr fraction and the autologous AML blast ligandomes to be represented in the benign-associated HLA ligandome, respectively. 79.1% (5,458/6,896) of the mapped LSCenr fraction ligandome was also presented on autologous AML blasts. 1,029 (14.9%) of these identified HLA class I ligands were presented exclusively on LSCenr fractions and not found on autologous AML blasts, previously analyzed AML blasts or any benign tissue. Furthermore, we were able to identify more than 8,000 different naturally presented HLA class II ligands representing ̴1,700 source proteins. Overlap of the HLA class II ligandomes revealed 45.0% (2,800/4,624) and 39.9% (2,706/6,790) of the LSCenr fraction and autologous AML blast ligandomes to be represented in the benign-associated HLA ligands, respectively. The HLA ligandomes of the LSCenr fraction and the autologous AML blasts showed an overlap of 69.7% (3,224/4,624). 941 (11.5%) HLA class II ligands showed exclusive representation in the LSCenr fraction ligandomes and were never identified on AML blast or benign tissue. These LSC-associated peptides represent highly interesting targets for immunotherapeutic approaches in AML patients and will be further evaluated for their potential to elicit a specific T-cell response. Taken together these preliminary results prove the feasibility of our approach to enrich leukemic progenitor cells of primary AML samples for the successful isolation and identification of HLA presented peptides associated with enriched leukemic progenitor cells. Disclosures Schuster: Immatics Biotechnologies GmbH: Employment. Kowalewski:Immatics Biotechnologies GmbH: Employment.


2020 ◽  
Author(s):  
Stephen N. Crooke ◽  
Inna G. Ovsyannikova ◽  
Richard B. Kennedy ◽  
Gregory A. Poland

AbstractA novel coronavirus (SARS-CoV-2) emerged from China in late 2019 and rapidly spread across the globe, infecting millions of people and generating societal disruption on a level not seen since the 1918 influenza pandemic. A safe and effective vaccine is desperately needed to prevent the continued spread of SARS-CoV-2; yet, rational vaccine design efforts are currently hampered by the lack of knowledge regarding viral epitopes targeted during an immune response, and the need for more in-depth knowledge on betacoronavirus immunology. To that end, we developed a computational workflow using a series of open-source algorithms and webtools to analyze the proteome of SARS-CoV-2 and identify putative T cell and B cell epitopes. Using increasingly stringent selection criteria to select peptides with significant HLA promiscuity and predicted antigenicity, we identified 41 potential T cell epitopes (5 HLA class I, 36 HLA class II) and 6 potential B cell epitopes, respectively. Docking analysis and binding predictions demonstrated enrichment for peptide binding to HLA-B (class I) and HLA-DRB1 (class II) molecules. Overlays of predicted B cell epitopes with the structure of the viral spike (S) glycoprotein revealed that 4 of 6 epitopes were located in the receptor-binding domain of the S protein. To our knowledge, this is the first study to comprehensively analyze all 10 (structural, non-structural and accessory) proteins from SARS-CoV-2 using predictive algorithms to identify potential targets for vaccine development.Significance StatementThe novel coronavirus SARS-CoV-2 recently emerged from China, rapidly spreading and ushering in a global pandemic. Despite intensive research efforts, our knowledge of SARS-CoV-2 immunology and the proteins targeted by the immune response remains relatively limited, making it difficult to rationally design candidate vaccines. We employed a suite of bioinformatic tools, computational algorithms, and structural modeling to comprehensively analyze the entire SARS-CoV-2 proteome for potential T cell and B cell epitopes. Utilizing a set of stringent selection criteria to filter peptide epitopes, we identified 41 T cell epitopes (5 HLA class I, 36 HLA class II) and 6 B cell epitopes that could serve as promising targets for peptide-based vaccine development against this emerging global pathogen.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 729-729
Author(s):  
Yoshitaka Zaimoku ◽  
Hiroyuki Takamatsu ◽  
Kazuyoshi Hosomichi ◽  
Tatsuhiko Ozawa ◽  
Noriharu Nakagawa ◽  
...  

Abstract [Background] The frequent loss of heterozygosity of the HLA haplotype in the short arm of chromosome 6 (6pLOH) in leukocytes is thought to offer compelling evidence of cytotoxic T cell (CTL) involvement in the development of acquired aplastic anemia (AA) because it represents the escape of hematopoietic stem/progenitor cells (HSPCs) with 6pLOH from the attack of CTLs that are specific to autoantigens presented by the lacked HLA class I allele. Although our previous study suggested that HLA-B*40:02 is the major allele involved in this phenomenon, the exact role of B*40:02 remained unclear because 6pLOH involving this allele is always associated with a lack of HLA-A and C alleles in the haplotype, and the presence of B*40:02-missing leukocytes were unable to be shown due to the lack of monoclonal antibodies (mAbs) specific to B61, the HLA-B antigen that corresponds to B*40:02. We recently succeeded in generating a mAb specific for HLA-B61 that enabled us to explore the role of B*40:02 in the development of AA. [Methods] Using the new mAb, we examined peripheral blood samples of 28 AA (12 with 6pLOH and 16 without 6pLOH) patients carrying this allele for the presence of B61(-) leukocytes using flow cytometry. HLA genes were enriched by sequence capture, a hybridization-based gene enrichment method, from genomic DNA of sorted B61(-) granulocytes, and were subjected to deep sequencing using an NGS (MiSeq). B61(+) granulocytes or T cells were used as controls. Potential mutations responsible for the B61-missing were identified when 10 or more variant reads were found only in B61(-) granulocytes. Thereafter, HLA-B alleles carrying those mutations were determined taking advantage of the nearest allele-specific SNPs. [Results] Among the 12 6pLOH(+) patients, 10 (83%) possessed 0.5%-60% B61-missing granulocytes that were not lacking HLA-A, in addition to 12% to 99% 6pLOH(+) granulocytes that lacked both B61 and an HLA-A allele on the same haplotype (Figure 1). B61(-) granulocytes that accounted for 0.5%-99% of the total granulocytes were detected in 9 (56%) of the 16 6pLOH(-) patients. The prevalence of missing B61 in the 28 AA patients was 21/28 (75%), much more frequent than those of the 3 other major alleles (A*02:01, 32%; A*02:06, 30%; A*24:02, 6%). B61(-) granulocytes were available for mutation analyses of HLA-B alleles in 15 of the 19 patients who possessed B61(-) granulocytes. The mean coverage of HLA-B gene was 426x. In total, 43 somatic mutations of HLA-B were identified in B61(-) granulocytes, all of which were present in B*40:02 but not in any of the other HLA-B alleles. Median variant allele frequency was 4.8% (range, 1.0% - 43%) and the number of mutations in each patient was 1 to 6 (Figure 2). Thirty-nine mutations were exonic while 4 were intronic. Exonic mutations included frameshift insertions (n=12), frameshift deletions (n=16), non-frameshift deletions (n=2), nonsense mutations (n=7), a missense mutation (n=1) and a start codon mutation (n=1). All four intronic mutations were considered to be a splice site mutation; two mutations deactivated 5' and 3' splice sites, whereas the other two were single base substitutions within intron 3, making alternative 5' splicing site with strong consensus sequence: GGC [A>G] TGAGT and TTC [C>G] TGAGT. Surprisingly, missense mutations in the alpha-2 and alpha-3 chain-coding region of HLA-B*40:02 were detected exclusively in the B61(+) granulocytes of two patients possessing B61(-) granulocytes, suggesting the inability of the mutant HSPCs to interact with CTLs. Variant allele frequencies of the two missense mutation were 40% and 45%, respectively. As a result of the mutation, virtually all granulocytes of the two patients were affected by B*40:02 mutations that allowed the HSPCs to escape the T cell attack. [Conclusions] The markedly high prevalence of leukocytes lacking HLA-B*40:02 as a result of either or both 6pLOH or structural gene mutations clearly indicates that antigen presentation by HSPCs to CTLs via the HLA-B allele plays a critical role in the pathogenesis of AA. Disclosures Takamatsu: Celgene: Honoraria; Janssen Pharmaceuticals: Honoraria. Nakao:Alexion Pharmaceuticals: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document