tumor associated antigens
Recently Published Documents


TOTAL DOCUMENTS

683
(FIVE YEARS 66)

H-INDEX

43
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Lena Gamboa ◽  
Ali H Zamat ◽  
Daryll Vanover ◽  
Chloé A Thiveaud ◽  
Hannah E Peck ◽  
...  

CAR T cell immunotherapy relies on CAR targeting of tumor-associated antigens, yet heterogenous antigen expression, interpatient variation, and off-tumor expression by healthy cells remain barriers. Here, we develop synthetic antigens to sensitize solid tumors for recognition and elimination by CAR T cells. Unlike tumor-associated antigens, we design synthetic antigens that are orthogonal to endogenous proteins to eliminate off-tumor targeting and that have a small genetic footprint to facilitate efficient tumor delivery to tumors by viral vectors. Using the RSV-F camelid single-domain antibody (VHH) as a synthetic antigen, we show that adoptive transfer of αVHH CAR T cells to mice bearing VHH expressing tumors reduced tumor burden in multiple syngeneic mouse models of cancer, improved survival, induced epitope spread, and protected against tumor rechallenge. Our work supports in situ delivery of synthetic antigens to treat antigen low or negative tumors with CAR T cells.


Author(s):  
Gerulf Hänel ◽  
Caroline Angerer ◽  
Katja Petry ◽  
Felix S. Lichtenegger ◽  
Marion Subklewe

AbstractMonocyte-derived Dendritic cells (DCs) have successfully been employed to induce immune responses against tumor-associated antigens in patients with various cancer entities. However, objective clinical responses have only been achieved in a minority of patients. Additionally, generation of GMP-compliant DCs requires time- and labor-intensive cell differentiation. In contrast, Blood DCs (BDCs) require only minimal ex vivo handling, as differentiation occurs in vivo resulting in potentially better functional capacities and survival. We aimed to identify a protocol for optimal in vitro activation of BDCs including the three subsets pDCs, cDC1s, and cDC2s. We evaluated several TLR ligand combinations and demonstrated that polyinosinic:polycytidylic acid [poly(I:C)] and R848, ligands for TLR3 and TLR7/8, respectively, constituted the optimal combination for inducing a positive co-stimulatory profile in all BDC subsets. In addition, TLR3 and TLR7/8 activation led to high secretion of IFN-α and IL-12p70. Simultaneous as opposed to separate tailored activation of pDCs and cDCs increased immunostimulatory capacities, suggesting that BDC subsets engage in synergistic cross-talk during activation. Stimulation of BDCs with this protocol resulted in enhanced migration, high NK-cell activation, and potent antigen-specific T-cell induction.We conclude that simultaneous activation of all BDC subsets with a combination of R848 + poly(I:C) generates highly immunostimulatory DCs. These results support further investigation and clinical testing, as standalone or in conjunction with other immunotherapeutic strategies including adoptive T-cell transfer and checkpoint inhibition.


Author(s):  
Aleksandr S. Golota

This review provides updated information on HLA class I and II antigens in cancer. The expression of HLA antigens in normal and tumor tissues, the physiological organization of the components of HLA antigen-processing machinery, the expression patterns of HLA antigens associated with the molecular and regulatory defects identified to date, as well as their functional and clinical significance, are described. This review summarizes clinical and experimental data on the complexity of immune escape mechanisms used by tumour cells to avoid T and natural killer cell responses. The variety of class I HLA phenotypes that can be produced by tumor cells during this process is presented. We also discuss here the potential capacity of metastatic lesions to recover MHC/HLA class I expression after immunotherapy, which depends on the reversible/ soft or irreversible/hard nature of the molecular mechanism responsible for the altered HLA class I phenotypes, and which determines the progression or regression of metastatic lesions in response to treatment. HLA сlass II genes play key roles in connecting innate and adaptive immunity in tumor rejection and when the escape route via HLA-I is already established. Antigens сlass II HLA expression in tumor cells and gives tumor cells the ability to present antigens, becoming less aggressive, and improves prognosis. Malignant tumors, as a genetic disease, are caused by structural alterations of the genome which can give rise to the expression of tumor-associated antigens in the form of either structurally altered molecules or of overexpressed normal molecules. Tumor associated antigens recognized by the immune system and induce a T-cell-mediated immune response. Outgrowing cancers use different strategies to evade destruction by the immune system. Immune evasion mechanisms affecting the expression and/or function of HLA-antigens are of special interest to tumor immunologists, since these molecules play a crucial role in the interaction of malignant cells with immune cells. This review describes the potential role of immunity control points in immunosuppression and therapeutic strategies for restoring the cytotoxicity of immune cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1164-1164
Author(s):  
Matteo Bianchi ◽  
Nina Reschke ◽  
Christian Reichen ◽  
Stefanie Fischer ◽  
Yvonne Grübler ◽  
...  

Abstract AML is driven by leukemic stem cells (LSC) that resist conventional chemotherapies and remain unaffected in their niche, continually replenishing circulating blast cells. We postulated that an avidity-engineered CD3 engaging DARPin ® (Designed Ankyrin Repeat Protein) able to simultaneously target LSC-specific CD70 as well as CD123 and CD33 could allow highly efficient and specific T cell-mediated killing of AML LSCs and circulating blast cells while preserving a therapeutic window towards healthy cells. Moreover, this simultaneous targeting of three different tumor associated antigens (TAAs) has the potential to address tumor heterogeneity, allowing targeting of AML cells with different co-expression patterns and/or expression levels of each single TAA. To achieve this ambitious goal we used our DARPin ® platform to build a novel class of triple targeting CD3 engaging molecules. Our DARPin ® libraries contain trillions of molecules allowing the generation of highly diverse binders against target proteins that can be easily combined into multi-specific DARPins ® to elicit desired biological effects. We leveraged this proprietary platform to screen multi-specific CD3 engaging DARPin ® molecules, including serum albumin binding DARPins ® for systemic half-life extension, and identify the optimal target affinity and molecular architecture to ensure potent avidity-driven T cell-mediated killing of AML cells while sparing healthy cells. This approach allowed the generation of CD3 engaging DARPins ® able to target simultaneously CD33, CD123, and CD70. Such DARPins ® demonstrated, in both allogenic and autologous setting, single digit pM potency against AML cell lines and primary cells expressing any combination of at least 2 of the 3 targeted TAAs, while showing low activity against single TAA-expressing cells, the latter representing cells of the healthy compartment. Higher expression of the selected TAAs on LSCs vs normal hematopoietic stem cells (HSC) can further enhance the selectivity of such an avidity driven molecule, leading to the preferential killing of LSC over HSC. Moreover, our multi-specific T cell engager (TCE) format resulted in a significant decrease in cytokine release in a whole blood test system for cytokine release syndrome (CRS) when compared to other mono-targeting TCE therapies, confirming its specificity and the potential for an improved safety profile within the normal hematopoietic system. Additionally, while showing similar anti-tumor efficacy in a mouse xenograft model using Molm-13 cell line and human PBMCs, CRS measured in serum 4 h after the initial injection of our multi-specific DARPin ® molecule was drastically reduced compared to a reference CD33 TCE, further strengthening the evidence that our multi targeting DARPins might also exhibit a good safety profile in humans. In conclusion, we were able to generate multi-specific CD3 engaging DARPin ® molecules with tailored affinities towards different TAAs showing exceptional efficacy and with the potential for superior safety over mono-specific TCE approaches, including systemic half-life extension to avoid a continuous intravenous infusion-based therapy. Disclosures Bianchi: Molecular Partners AG (MAG): Current holder of stock options in a privately-held company. Reschke: Molecular Partners AG (MAG): Current holder of stock options in a privately-held company. Reichen: Molecular Partners AG (MAG): Current holder of stock options in a privately-held company. Fischer: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Grübler: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Eggenschwiler: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Krieg: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Ioannou: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Ragusa: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Looser: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Spitzli: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Herzog: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Villemagne: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Kaufmann: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Matzner: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Auge: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Hänggi: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Ali: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Franchini: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Kirkin: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Schlereth: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Luethi: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Ochsenbein: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Riether: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Steiner: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company. Goubier: Molecular Partners AG (MAG): Other: Owns stock options and/or shares of the company.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A820-A820
Author(s):  
Phonphimon Wongthida ◽  
Kalli Catcott ◽  
Kelly Lancaster ◽  
Keith Bentley ◽  
Anouk Dirksen ◽  
...  

BackgroundThe tumor microenvironment is a complex, multicellular system, composed not only of malignant cancer cells but also of a diversity of stromal cells including vascular cells, immune cells, and fibroblasts that support tumorigenesis. Antigens expressed on these cells tend to be widely expressed across a range of malignancies, presenting unique opportunities for development of anti-cancer therapies.MethodsWe have previously demonstrated that STING-agonist antibody-drug conjugates (Immunosynthen ADCs) targeting tumor cell antigens induce target-dependent anti-tumor immune responses in vitro and in vivo. To that effect, we hypothesized that Immunosynthen ADCs targeting tumor-associated antigens would coordinate immune-mediated killing of cancer cells not expressing the tumor-associated antigens (antigen-negative cancer cells) and induce anti-tumor activity.ResultsHerein, we demonstrate that targeting tumor-associated antigens with STING-agonist ADCs activate the STING pathway in immune cells via Fcγ receptor-mediated uptake. In addition, due to the intrinsic ability of certain tumor-associated cells to activate the STING pathway, STING-agonist ADCs targeting those cells can induce STING signaling in both the targeted cells and the immune cells, which constitutes a therapeutic advantage of ADCs that activate the STING pathway. In triple co-cultures of antigen-positive tumor-associated cells, antigen-negative cancer cells, and immune cells, the STING-agonist ADC specifically induced potent cell killing of the antigen-negative cancer cells with minimal impact on the immune and tumor-associated cells, thus representing a non-traditional, yet highly effective mechanism of ADC targeting. In vivo efficacy studies showed that STING-agonist ADCs developed for two tumor-associated antigens induced complete, sustained tumor regressions in syngeneic tumor models and exhibited immunological memory after rechallenge. CD8+ T cells contributed to the anti-tumor activity of the STING-agonist ADCs.ConclusionsIn summary, Immunosynthen STING-agonist ADCs targeting tumor-associated antigens represent a novel approach for ADC-mediated cancer immunotherapy and enable the multifaceted activation of the STING pathway in a tumor-targeted manner beyond tumor antigens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ditte E. Jæhger ◽  
Mie L. Hübbe ◽  
Martin K. Kræmer ◽  
Gael Clergeaud ◽  
André V. Olsen ◽  
...  

AbstractAdoptive T-cell transfer (ACT) offers a curative therapeutic option for subsets of melanoma and hematological cancer patients. To increase response rates and broaden the applicability of ACT, it is necessary to improve the post-infusion performance of the transferred T cells. The design of improved treatment strategies includes transfer of cells with a less differentiated phenotype. Such T cell subsets have high proliferative potential but require stimulatory signals in vivo to differentiate into tumor-reactive effector T cells. Thus, combination strategies are needed to support the therapeutic implementation of less differentiated T cells. Here we show that systemic delivery of tumor-associated antigens (TAAs) facilitates in vivo priming and expansion of previously non-activated T cells and enhance the cytotoxicity of activated T cells. To achieve this in vivo priming, we use flexible delivery vehicles of TAAs and a TLR7/8 agonist. Contrasting subcutaneous delivery systems, these vehicles accumulate TAAs in the spleen, thereby achieving close proximity to both cross-presenting dendritic cells and transferred T cells, resulting in robust T-cell expansion and anti-tumor reactivity. This TAA delivery platform offers a strategy to safely potentiate the post-infusion performance of T cells using low doses of antigen and TLR7/8 agonist, and thereby enhance the effect of ACT.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A13.2-A14
Author(s):  
E Belnoue ◽  
K Das ◽  
M Rossi ◽  
T Hofer ◽  
S Danklmaier ◽  
...  

BackgroundKISIMATM platform allows the development of protein-based cancer vaccines able to induce a potent, tumor-specific CD8 and CD4 T cells response. While the cell penetrating peptide and peptide agonist for Toll like receptor (TLR)-2 and TLR-4 confer, respectively, the cell delivery and self-adjuvanticity properties, the multiantigenic domain allows the targeting of different cancer antigens, resulting in anti-tumoral efficacy in different murine models. Oncolytic viruses exert their therapeutic effects by a prolonged oncolytic action and the associated intratumoral inflammation as well as general immune activation. Arming oncolytic virus with tumor associated antigens can additionally enhance the tumor-specific T cell portion and therefore positively affect the balance of antitumor versus antiviral immune responses. The protein vaccine KISIMATM and the recombinant oncolytic virus VSV-GP-TAA (vesicular stomatitis virus pseudotyped with LCMV GP expressing tumor-associated antigens) are both promising vaccine candidates that offer a new cancer vaccination opportunity when combined in heterologous prime-boost regimen.Materials and MethodsMice were vaccinated with subcutaneous (s.c.) injection of KISIMA-TAA vaccine and/or with intravenous injection of VSV-GP-TAA in different settings. Immunogenicity was assessed by measuring the peripheral antigen-specific response. Anti-tumoral efficacy as well as in depth monitoring of TILs and tumor microenvironment modulation were assessed following therapeutic vaccination in different tumor models. Additionally, transcriptome and immunohistochemistry analyses of the TC-1 tumor have been performed. Combination of heterologous prime-boost with checkpoint blockade PD-1 therapy has been assessed.ResultsPriming with KISIMA-TAA followed by VSV-GP-TAA boost induced a large pool of polyfunctional and persistent antigen-specific cytotoxic T cells in the periphery as well as within the tumor in several tumor models. Frequencies of antigen specific T cells are significantly higher than the respective homologous vaccinations. Additionally, transcriptome analysis of a cold tumor model revealed profound changes in the tumor microenvironment upon heterologous vaccination, including a strong upregulation of gene signatures of several pro-inflammatory cytokines and chemokines required for antitumor immunity along with dendritic and T cell trafficking and activation. This was corroborated by flow-cytometric analysis of tumor-infiltrating leukocytes showing massive CD8+ and CD4+ T cell infiltration as well as repolarization of M2-like macrophages towards M1-phenotype. The presence of the CD8+ T cells within the tumor core was confirmed by immunohistochemistry analysis. Moreover, combining heterologous vaccination with checkpoint blockade further improved its therapeutic efficacy and the number of long-term survivors.ConclusionsThe KISIMA/VSV-GP heterologous prime-boost approach holds great promise for patients with primary or acquired resistance to checkpoint blockade due to its ability to induce tumor-specific T cell, improve T cell infiltration and increase tumor inflammation, even in tumors with limited permissivity for the oncolytic virus.Disclosure InformationE. Belnoue: A. Employment (full or part-time); Significant; AMAL Therapeutics SA. K. Das: None. M. Rossi: A. Employment (full or part-time); Significant; AMAL Therapeutics SA. T. Hofer: None. S. Danklmaier: None. T. Nolden: A. Employment (full or part-time); Significant; Viratherapeutics GmbH. L. Schreiber: None. K. Angerer: None. J. Kimpel: None. S. Hoegler: None. L. Kenner: None. D. von Laer: None. K. Elbers: A. Employment (full or part-time); Significant; Viratherapeutics GmbH. G. Wollmann: None. M. Derouazi: A. Employment (full or part-time); Significant; AMAL Therapeutics SA.


Leukemia ◽  
2021 ◽  
Author(s):  
Maria A. Garcia-Marquez ◽  
Martin Thelen ◽  
Sarah Reinke ◽  
Diandra Keller ◽  
Kerstin Wennhold ◽  
...  

AbstractWhile classical Hodgkin lymphoma (HL) is highly susceptible to anti-programmed death protein 1 (PD1) antibodies, the exact modes of action remain controversial. To elucidate the circulating lymphocyte phenotype and systemic effects during anti-PD1 1st-line HL treatment we applied multicolor flow cytometry, FluoroSpot and NanoString to sequential samples of 81 HL patients from the NIVAHL trial (NCT03004833) compared to healthy controls. HL patients showed a decreased CD4 T-cell fraction, a higher percentage of effector-memory T cells and higher expression of activation markers at baseline. Strikingly, and in contrast to solid cancers, expression for 10 out of 16 analyzed co-inhibitory molecules on T cells (e.g., PD1, LAG3, Tim3) was higher in HL. Overall, we observed a sustained decrease of the exhausted T-cell phenotype during anti-PD1 treatment. FluoroSpot of 42.3% of patients revealed T-cell responses against ≥1 of five analyzed tumor-associated antigens. Importantly, these responses were more frequently observed in samples from patients with early excellent response to anti-PD1 therapy. In summary, an initially exhausted lymphocyte phenotype rapidly reverted during anti-PD1 1st-line treatment. The frequently observed IFN-y responses against shared tumor-associated antigens indicate T-cell-mediated cytotoxicity and could represent an important resource for immune monitoring and cellular therapy of HL.


Sign in / Sign up

Export Citation Format

Share Document