scholarly journals Novel Lentiviral Vectors for Gene Therapy of Sickle Cell Disease Combining Gene Addition and Gene Silencing Strategies

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3973-3973
Author(s):  
Megane Brusson ◽  
Anne Chalumeau ◽  
Pierre Martinucci ◽  
Valentina Poletti ◽  
Fulvio Mavilio ◽  
...  

Abstract Sickle cell disease (SCD) is due to a mutation in the β-globin (HBB) gene causing the production of the sickle β S-globin chain. The sickle Hb (HbS, a 2β S2) polymerizes, leading to the formation of sickle-shaped red blood cells that cause vaso-occlusions and organ damage. Transplantation of autologous hematopoietic stem/progenitor cells (HSPCs) transduced with lentiviral vectors (LV) expressing an anti-sickling β-globin transgene (βAS LV) is a promising curative treatment; however, it is partially effective in SCD patients, who still present elevated HbS levels. Here, we aim to improve LVs to boost therapeutic β-like globin levels without increasing the mutagenic vector load in HSPCs. We developed 2 novel LVs expressing βAS together with an artificial microRNA (amiR) targeting either the fetal Hb (HbF) repressor BCL11A (βAS/amiRBCL11A) or the β S-globin (βAS/amiRHBB). By downregulating BCL11A, amiRBCL11A re-activates the expression of the endogenous anti-sickling fetal γ-globin, which, together with βAS, should improve the clinical course of SCD; β S-globin downregulation should favor βAS incorporation in Hb tetramers, increase therapeutic Hb levels and ameliorate the SCD phenotype. First, we developed βAS/amiRBCL11A LV by inserting the amiR in multiple position of the βAS intron 2 under the control of HBB promoter/enhancers to limit BCL11A downregulation to the erythroid lineage and reduce potential amiR-related cellular toxicity and off-target effects. We showed that amiR insertion site did not affect LV titer nor βAS expression in a human erythroid cell line (HUDEP2). BCL11A downregulation in HUDEP2 led to γ-globin gene de-repression and a high proportion of HbF + cells (RTqPCR, HPLC, flow cytometry). Importantly, the total amount of therapeutic β-like globins was substantially higher in βAS/amiRBCL11A LV- than in βAS LV-transduced cells, with no impairment in cell viability or erythroid differentiation. In parallel, we designed 17 amiRs targeting HBB and generated the corresponding βAS/amiRHBB LVs. We tested these LVs in HUDEP2 and selected 2 amiRs efficiently downregulating β-globin at mRNA and protein levels (RT-qPCR and Western Blot). Of note, we modified the βAS transgene by inserting silent mutations that prevent its recognition by the amiR (βASm). Finally, we tested βAS/amiRBCL11A and βAS/amiRHBB LVs in HSPCs from SCD patients. HSPC-derived erythroid cells transduced with βAS/amiRBCL11A LV showed increased HbF levels, although HbS levels remained high. To further reduce β S-globin levels, we targeted the β S-globin mRNA using the βAS/amiRHBB LV. Efficient HSPC transduction by βASm/amiRHBB LV led to a substantial decrease of β S-globin transcripts in HSPC-derived erythroid cells compared to the βAS LV-transduced cells (RTqPCR) at a VCN/cell of 2. Notably, the amiR specifically down-regulated β S-globin, without affecting βAS expression. In βASm/amiRHBB- vs βAS LV-transduced cells, HPLC analysis showed that β S-globin downregulation led to a significant decrease of HbS, which represented 58% and 71% of the total Hb, respectively). This was associated with a significant increase of the therapeutic Hb in βASm/amiRHBB LV- vs βAS LV-transduced erythroid cells (38% and 27% of the total Hb, respectively). Importantly, we observed a substantial reduction of the proportion of HbS-positive cells in βASm/amiRHBB- vs βAS LV-transduced samples (from 96% to 70%; Figure 1A). The increased incorporation of βAS in Hb tetramers and the decrease in β S-globin led to a better correction of the sickling phenotype in mature RBCs derived from HSPCs transduced with βASm/amiRHBB LV- compared to βAS LV (55% and 84% of sickling cells, respectively; Figure 1B). A clonal assay of hematopoietic progenitors showed no impairment in HSPC viability and differentiation towards the erythroid and myeloid lineages upon transduction with bifunctional LVs. βASm/amiRHBB LV showed a standard lentiviral integration profile. Finally, we performed RNAseq to further evaluate the safety of our therapeutic strategy. In conclusion, we created a LV able to concomitantly silence the β S-globin and express βAS, achieving clinically relevant levels of therapeutic Hb and efficient correction of the sickling phenotype. Therefore, the combination of gene addition and gene silencing strategies can improve the efficacy of current therapeutic approaches, representing a novel treatment for SCD. Figure 1 Figure 1. Disclosures Cavazzana: Smart Immune: Other: co-founder.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Huiqiao Chen ◽  
Zixuan Wang ◽  
Shanhe Yu ◽  
Xiao Han ◽  
Yun Deng ◽  
...  

AbstractThe human ζ-globin gene (HBZ) is transcribed in primitive erythroid cells only during the embryonic stages of development. Reactivation of this embryonic globin synthesis would likely alleviate symptoms both in α-thalassemia and sickle-cell disease. However, the molecular mechanisms controlling ζ-globin expression have remained largely undefined. Moreover, the pharmacologic agent capable of inducing ζ-globin production is currently unavailable. Here, we show that TRIAC, a bioactive thyroid hormone metabolite, significantly induced ζ-globin gene expression during zebrafish embryogenesis. The induction of ζ-globin expression by TRIAC was also observed in human K562 erythroleukemia cell line and primary erythroid cells. Thyroid hormone receptor α (THRA) deficiency abolished the ζ-globin-inducing effect of TRIAC. Furthermore, THRA could directly bind to the distal enhancer regulatory element to regulate ζ-globin expression. Our study provides the first evidence that TRIAC acts as a potent inducer of ζ-globin expression, which might serve as a new potential therapeutic option for patients with severe α-thalassemia or sickle-cell disease.


2021 ◽  
Author(s):  
Moataz Dowaidar

Autologous transplantation of gene-modified HSCs might be used to treat Sickle Cell Disease (SCD) once and for all. Hematopoietic Stem Cell (HSC) gene therapy with lentiviral-globin gene addition was optimized by HSC collection, vector constructs, lentiviral transduction, and conditioning in the current gene therapy experiment for SCD, resulting in higher gene marking and phenotypic correction. Further advancements over the next decade should allow for a widely approved gene-addition therapy. Long-term engraftment is crucial for gene-corrected CD34+ HSCs, which might be addressed in the coming years, and gene repair of the SCD mutation in the-globin gene can be achieved in vitro using genome editing in CD34+ cells. Because of breakthroughs in efficacy, safety, and delivery strategies, in vivo gene addition and gene correction in BM HSCs is advancing. Overall, further research is needed, but HSC-targeted gene addition/gene editing therapy is a promising SCD therapy with curative potential that might be widely available soon.


2016 ◽  
Vol 113 (38) ◽  
pp. 10661-10665 ◽  
Author(s):  
Lin Ye ◽  
Jiaming Wang ◽  
Yuting Tan ◽  
Ashley I. Beyer ◽  
Fei Xie ◽  
...  

Hereditary persistence of fetal hemoglobin (HPFH) is a condition in some individuals who have a high level of fetal hemoglobin throughout life. Individuals with compound heterozygous β-thalassemia or sickle cell disease (SCD) and HPFH have milder clinical manifestations. Using RNA-guided clustered regularly interspaced short palindromic repeats-associated Cas9 (CRISPR-Cas9) genome-editing technology, we deleted, in normal hematopoietic stem and progenitor cells (HSPCs), 13 kb of the β-globin locus to mimic the naturally occurring Sicilian HPFH mutation. The efficiency of targeting deletion reached 31% in cells with the delivery of both upstream and downstream breakpoint guide RNA (gRNA)-guided Staphylococcus aureus Cas9 nuclease (SaCas9). The erythroid colonies differentiated from HSPCs with HPFH deletion showed significantly higher γ-globin gene expression compared with the colonies without deletion. By T7 endonuclease 1 assay, we did not detect any off-target effects in the colonies with deletion. We propose that this strategy of using nonhomologous end joining (NHEJ) to modify the genome may provide an efficient approach toward the development of a safe autologous transplantation for patients with homozygous β-thalassemia and SCD.


2018 ◽  
Vol 315 (4) ◽  
pp. R840-R847 ◽  
Author(s):  
Angela Rivers ◽  
Ramasamy Jagadeeswaran ◽  
Donald Lavelle

Sickle cell disease (SCD) is caused by a mutation of the β-globin gene (Ingram VM. Nature 180: 326–328, 1957), which triggers the polymerization of deoxygenated sickle hemoglobin (HbS). Approximately 100,000 SCD patients in the United States and millions worldwide (Piel FB, et al. PLoS Med 10: e1001484, 2013) suffer from chronic hemolytic anemia, painful crises, multisystem organ damage, and reduced life expectancy (Rees DC, et al. Lancet 376: 2018–2031, 2010; Serjeant GR. Cold Spring Harb Perspect Med 3: a011783, 2013). Hematopoietic stem cell transplantation can be curative, but the majority of patients do not have a suitable donor (Talano JA, Cairo MS. Eur J Haematol 94: 391–399, 2015). Advanced gene-editing technologies also offer the possibility of a cure (Goodman MA, Malik P. Ther Adv Hematol 7: 302–315, 2016; Lettre G, Bauer DE. Lancet 387: 2554–2564, 2016), but the likelihood that these strategies can be mobilized to treat the large numbers of patients residing in developing countries is remote. A pharmacological treatment to increase fetal hemoglobin (HbF) as a therapy for SCD has been a long-sought goal, because increased levels of HbF (α2γ2) inhibit the polymerization of HbS (Poillin WN, et al. Proc Natl Acad Sci USA 90: 5039–5043, 1993; Sunshine HR, et al. J Mol Biol 133: 435–467, 1979) and are associated with reduced symptoms and increased lifespan of SCD patients (Platt OS, et al. N Engl J Med 330: 1639–1644, 1994; Platt OS, et al. N Engl J Med 325: 11–16, 1991). Only two drugs, hydroxyurea and l-glutamine, are approved by the US Food and Drug Administration for treatment of SCD. Hydroxyurea is ineffective at HbF induction in ~50% of patients (Charache S, et al. N Engl J Med 332: 1317–1322, 1995). While polymerization of HbS has been traditionally considered the driving force in the hemolysis of SCD, the excessive reactive oxygen species generated from red blood cells, with further amplification by intravascular hemolysis, also are a major contributor to SCD pathology. This review highlights a new class of drugs, lysine-specific demethylase (LSD1) inhibitors, that induce HbF and reduce reactive oxygen species.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3119-3119
Author(s):  
Fabrizia Urbinati ◽  
Zulema Romero Garcia ◽  
Sabine Geiger ◽  
Rafael Ruiz de Assin ◽  
Gabriela Kuftinec ◽  
...  

Abstract Abstract 3119 BACKGROUND: Sickle cell disease (SCD) affects approximately 80, 000 Americans, and causes significant neurologic, pulmonary, and renal injury, as well as severe acute and chronic pain that adversely impacts quality of life. Because SCD results from abnormalities in red blood cells, which in turn are produced from adult hematopoietic stem cells, hematopoietic stem cell transplant (HSCT) from a healthy (allogeneic) donor can benefit patients with SCD, by providing a source for life-long production of normal red blood cells. However, allogeneic HSCT is limited by the availability of well-matched donors and by immunological complications of graft rejection and graft-versus-host disease. Thus, despite major improvements in clinical care, SCD continues to cause significant morbidity and early mortality. HYPOTHESIS: We hypothesize that autologous stem cell gene therapy for SCD has the potential to treat this illness without the need for immune suppression of current allogeneic HSCT approaches. Previous studies have demonstrated that addition of a β-globin gene, modified to have the anti-sickling properties of fetal (γ-) globin (βAS3), to bone marrow (BM) stem cells in murine models of SCD normalizes RBC physiology and prevents the manifestations of sickle cell disease (Levassuer Blood 102 :4312–9, 2003). The present work seeks to provide pre-clinical evidence of efficacy for SCD gene therapy using human BM CD34+ cells modified with the bAS3 lentiviral (LV) vector. RESULTS: The βAS3 globin expression cassette was inserted into the pCCL LV vector backbone to confer tat-independence for packaging. The FB (FII/BEAD-A) composite enhancer-blocking insulator was inserted into the 3' LTR (Ramezani, Stem Cells 26 :32–766, 2008). Assessments were performed transducing human BM CD34+ cells from healthy or SCD donors with βAS3 LV vectors. Efficient (1–3 vector copies/cell) and stable gene transmission were determined by qPCR and Southern Blot. CFU assays demonstrated that βAS3 gene modified SCD CD34+ cells are fully capable of maintaining their hematopoietic potential. To demonstrate the effectiveness of the erythroid-specific bAS3 gene in the context of human HSPC (Hematopoietic Stem and Progenitor Cells), we optimized an in vitro model of erythroid differentiation of huBM CD34+ cells. We successfully obtained an expansion up to 700 fold with >80% fully mature enucleated RBC derived from CD34+ cells obtained from healthy or SCD BM donors. We then assessed the expression of the βAS3 globin gene by isoelectric focusing: an average of 18% HbAS3 over the total globin present (HbS, HbA2) per Vector Copy Number (VCN) was detected in RBC derived from SCD BM CD34+. A qRT-PCR assay able to discriminate HbAS3 vs. HbA RNA, was also established, confirming the quantitative expression results obtained by isoelectric focusing. Finally, we show morphologic correction of in vitro differentiated RBC obtained from SCD BM CD34+ cells after βAS3 LV transduction; upon induction of deoxygenation, cells derived from SCD patients showed the typical sickle shape whereas significantly reduced numbers were detected in βAS3 gene modified cells. Studies to investigate risks of insertional oncogenesis from gene modification of CD34+ cells by βAS3 LV vectors are ongoing as are in vivo studies to demonstrate the efficacy of βAS3 LV vector in the NSG mouse model. CONCLUSIONS: This work provides initial evidence for the efficacy of the modification of human SCD BM CD34+ cells with βAS3 LV vector for gene therapy of sickle cell disease. This work was supported by the California Institute for Regenerative Medicine Disease Team Award (DR1-01452). Disclosures: No relevant conflicts of interest to declare.


Hematology ◽  
2005 ◽  
Vol 2005 (1) ◽  
pp. 66-73 ◽  
Author(s):  
Mark C. Walters

Abstract HLA-identical sibling hematopoietic cell transplantation (HCT) for sickle cell disease (SCD) has a strong track record of efficacy and there is growing appreciation that its benefits exceed its risks in selected individuals. In contrast, the clinical utility of replacement gene therapy for sickle cell disease remains unproven. Its challenge is to ensure viral transduction into hematopoietic stem cells (HSCs) and to generate safe, stable, erythroid-specific replacement gene expression at a level that is sufficient to have a clinical effect. The clinical necessity for fulfilling all these criteria may make this genetic disorder among the most complex to treat successfully by gene therapy. But the experience of HCT for SCD has proven that eliminating the βS-globin gene is curative when the transfer is stable. Thus replacement gene therapy for sickle cell disease remains a subject of intense interest and investigation.


2021 ◽  
Vol 13 (598) ◽  
pp. eabf2444
Author(s):  
Annalisa Lattanzi ◽  
Joab Camarena ◽  
Premanjali Lahiri ◽  
Helen Segal ◽  
Waracharee Srifa ◽  
...  

Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the β-globin gene (HBB). Ex vivo β-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)–mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1224-1224
Author(s):  
Hassana Fathallah ◽  
Ali Taher ◽  
Ali Bazarbachi ◽  
George F. Atweh

Abstract High levels of fetal hemoglobin (HbF) are known to ameliorate the pathophysiology of β-globin disorders. The objective of this study is twofold: the first is to evaluate the efficacy of hemin as an inducer of HbF in erythroid cells from patients with sickle cell disease (SCD) and β-thalassemia (β-thal); the second is to determine if the combination of butyrate and hemin can induce higher levels of expression of HbF than either agent alone. BFU-E derived cells from the peripheral blood of two patients with homozygous SCD, three patients with β-thal, one patient with sickle β-thalassemia (S/β-thal) and one normal individual (AA) were cultured in the absence (control) or presence of butyrate (B), hemin (H) or butyrate and hemin (B+H). As expected, the levels of γ-globin mRNA [expressed as % γ/(β+γ)] increased upon butyrate exposure in progenitor-derived erythroid cells from SS and S/β-thal patients, and to a lesser extent in patients with β-thal (P = 0.01). In contrast, butyrate did not increase γ-globin expression in BFU-E derived colonies from the AA individual. Moreover, hemin exposure increased the γ/(β+γ) ratio in all subjects (P = 0.02). These findings confirm that hemin can be an effective HbF inducing agent in SCD and β-thal. Although the mechanism of induction of HbF by hemin is not known, unlike butyrate, hemin is clearly not a direct inhibitor of histone deacetylases and is likely to induce HbF by a different mechanism of action. Thus, we investigated the effect of the combination of hemin and butyrate on γ-globin gene expression. Interestingly, the combination of butyrate and hemin resulted in additive increases in the γ/(β+γ) ratios in all patients compared to butyrate alone (P = 0.03) or hemin alone (P = 0.01) (Table I). Just as importantly, exposure to both drugs resulted in a decrease in the α/(β+γ) mRNA imbalance in β-thal, which is the predominant pathophysiological feature of this disorder. In conclusion, combination therapy consisting of butyrate and hemin, which are two agents with different mechanisms of action and different toxicity profiles, may provide a more effective way of inducing HbF in patients with SCD and β-thal. Table I mRNA SCD β-Thal S/β-Thal AA n 2 3 1 1 %γ/(β+γ) Control 36 42 26 7.1 B 45 50 41 6.9 H 55 55 52 15 B+H 60 61 59 13 α/(β+γ) Control 3.1 8.9 1.8 1.9 B 2.0 7.7 2.9 1.7 H 3.0 7.5 1.7 1.0 B+H 2.9 6.4 2.2 1.3


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. SCI-17-SCI-17
Author(s):  
Tim M. Townes ◽  
Lei Ding ◽  
Chia-Wei Chang ◽  
Yi-Shin Lai ◽  
Joe Sun ◽  
...  

Abstract We have recently used CRISPR-Cas to correct the HBB gene in induced Pluripotent Stem Cells (iPSC) derived from patients with Sickle Cell Disease (SCD) and to correct the JAK3 gene in iPSC derived from patients with Severe Combine Immune Deficiency (SCID). Off-target mutations were minimized, if not eliminated, by use of paired guide RNAs and the Cas9 nickase. When erythroid progenitors (EP) produced from corrected SCD iPSC are transplanted into NSG mice, a complete switch from gamma- to beta-globin gene expression occurs within 24 hours and high levels of beta mRNA are synthesized; the betaA:betaS ratio is 60:40. Hematopoietic progenitors produced from corrected SCID iPSC can be differentiated into T cell populations that express a full repertoire of T Cell Receptors (TCRs). These results suggest that CRISPR-Cas enhanced gene replacement may provide safe and effective therapies for many erythroid and lymphoid disorders. In an alternative approach, we electroporated a preformed, biochemical complex composed of a guide RNA (gRNA), a modified recombinant Cas9 (mrCas9) and a single stranded oligodeoxnucleotide (ssODN) into sickle iPSC or primary sickle CD34+ hematopoietic progenitors. Sixty-five percent of sickle iPSC colonies contained at least one corrected allele. When homozygous corrected colonies were differentiated into erythroid progenitors and transplanted into NSG mice, human erythroid cells expressed 100% HbA. When primary sickle CD34+ hematopoietic progenitors were electroporated with the gRNA/mrCas9/ssODN complex and differentiated into erythroid cells in vitro, HbA was expressed at 30-40%. These results suggest that primary bone marrow CD34+ cells that are isolated from patients with sickle cell disease, beta-thalassemia, SCID, DBA and other hematopoietic disorders may be electroporated with specific gRNA/mrCas9/ssODN complexes and transplanted into patients to rapidly, safely and effectively treat these debilitating disorders. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 30-31
Author(s):  
Kevin R. Gillinder ◽  
Casie Leigh Reed ◽  
Shezlie Malelang ◽  
Helen Lorraine Mitchell ◽  
Emma Hoskin ◽  
...  

Sickle cell disease (SCD) affects millions of people worldwide and represents the most common monogenic disease of mankind (1). It is due to a homozygous T to A transversion in the β-globin gene that results in an amino acid variant - G6V - and production of HbS, which polymerises in red blood cells (RBCs) under hypoxic conditions. This generates irreversibly sickled cells that fail to traverse the microcirculation, resulting in micro-infarcts, hypoxia and pain, or 'sickle cell crises'. During gestation RBCs utilise different sets of globin genes to produce embryonic and fetal hemoglobins (HbF), so it is not until after birth when adult hemoglobin (HbA) is first produced that the first signs of SCD become apparent. This process termed 'hemoglobin switching' has been the focus of research efforts for decades because it offers an opportunity to reactivate HbF in adult cells of patients with hemoglobinopathies. A number of transcription factors, including Krüppel-like factor 1 (KLF1), play critical roles in hemoglobin switching. KLF1 is an essential erythroid transcription factor that co-ordinates the expression of more than a thousand genes critical to the formation of adult RBCs. KLF1 directly binds the β-globin gene promoter to up regulate its expression, whilst regulating the expression of additional factors like BCL11A and LRF that directly repress γ-globin expression (HbF). Heterozygosity for loss of function mutations in KLF1 leads to a significant increase in HbF that is beneficial to patients with β-thalassemia. We propose this can be recreated by advanced gene editing techniques to provide an effective therapy for SCD. We have employed CRISPR-based gene editing to knockout the expression of KLF1 in human cells. We designed two separate sgRNAs with corresponding HDR templates to target the second exon of KLF1 and ablate its function. We optimised transfection protocols and tested the on-target specificity of our sgRNAs achieving >90% efficacy in all cell types assayed. Using HUDEP-2 cells (2), a conditionally immortalised erythroid cell line which harbors three copies of KLF1 (3), we have demonstrated that these cells require at least one copy (>1/3) for survival; heterozygous cells (+/-/- or +/+/-) proliferate at a reduced rate, but are able to differentiate normally. Using RNA-seq, we identified some genes, including ICAM-4 and BCAM, which are down-regulated accordingly in a KLF1 gene dosage-dependent manner. ICAM-4 and BCAM are cellular adhesion molecules implicated in triggering vaso-occlusive episodes (4; 5), so it is anticipated their reduced expression may provide additional benefit in treating SCD. Gamma-globin is upregulated 10-fold, BCL11A down-regulated 3-fold, and HbF+ RBCs generated at ~20% of total RBCs in KLF1 +/-/- HUDEP-2 cell lines. We also engineered the ablation of KLF1 in CD34+ cells harvested from the peripheral blood of SCD patients undergoing exchange transfusions. Following transfection of the two guides, we performed directed differentiation using an erythroid differentiation medium and analysed the levels of HbF. We observed HbF at levels of between 40-60% of total Hb by HPLC, and HbF+ cells of ~50% by FACS. There was no measurable block in erythroid differentiation by FACS. We documented the types of gene editing using a high throughout NGS assay (6). We compared efficiencies of CRISPR repair of the HbS mutation with CRIPSR damage of the KLF1 gene. Lastly, we transplanted gene-edited CD34 cells into NSGW41 mice (where human erythropoiesis is established) to determine the efficiency and safety of editing long term HSCs from SCD patients. We will report on the results of these xenotransplantation assays. Taken together these results reveal the potential utility in targeting KLF1 to cure SCD. References: Wastnedge, E. et al..J Glob Health 8, 021103 (2018). Kurita, R. et al.PLoS One 8, e59890 (2013). Vinjamur, D. S. & Bauer, D. E. Methods Mol Biol 1698, 275-284 (2018). Bartolucci, P. et al..Blood 116, 2152-9 (2010). Zhang, J., et al. PLoS One 14, e0216467 (2019). Bell, C. C., et al. BMC Genomics 15, 1002 (2014). Perkins, A. et al..Blood 127, 1856-62 (2016). Disclosures Kaplan: Celgene: Honoraria; Novartis: Honoraria. Perkins:Novartis Oncology: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document