scholarly journals Does Fibrin Structure Contribute to the Increased Risk of Thrombosis in COVID-19 ICU Patients?

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3208-3208
Author(s):  
Judith Juliana De Vries ◽  
Chantal Visser ◽  
Lotte Geers ◽  
Johan A. Slotman ◽  
Henrik Endeman ◽  
...  

Abstract Introduction: SARS-CoV-2 is responsible for a global pandemic, with almost 200 million confirmed cases. SARS-CoV-2 infection can lead to various disease states, from only mild symptoms in the majority of cases to severe disease, which is associated with an increased incidence of venous thromboembolism (VTE). We hypothesized that an altered fibrin network structure contributes to VTE in COVID-19 patients by affecting thrombus stability and fibrinolysis sensitivity. By studying the fibrin network of COVID-19 patients, we aimed to unravel the mechanisms that contribute to the increased risk of VTE in COVID-19 patients. Methods: Between April 2020 and December 2020, we collected plasma samples from patients with COVID-19 admitted to the intensive care unit (ICU) of the Erasmus Medical Center. We included patients with confirmed VTE diagnosed on CT-angiography, and COVID-19 patients without confirmed VTE during ICU admission. Samples were collected on admission to the ICU and after confirmed VTE or at similar time points in ICU patients without confirmed VTE. In addition, we collected plasma from COVID-19 patients at admission to general wards without confirmed VTE and from healthy controls. Clots were formed by mixing citrated plasma with thrombin (final concentration 1 U/ml) and calcium (17 mM). We imaged the clots using stimulated emission depletion (STED) microscopy, a super-resolution technique in which a depletion laser is used to selectively switch off fluorophores surrounding the focal point, thereby increasing the resolution. In these images, fibrin fiber diameters were measured using the Local Thickness plugin of ImageJ. Fiber density was quantified as percentage of area in Z-stacks of confocal microscopy images. Finally, a clot lysis assay based on turbidity was used to determine sensitivity to fibrinolysis (clot lysis time) and clot density (difference between maximum and baseline absorbance). Differences in fibrin network properties between groups were tested using One-Way ANOVA with Bonferroni post-hoc tests and linear regression with and without adjustment for fibrinogen levels. Results: We included 21 COVID-19 ICU patients with confirmed VTE, 20 COVID-19 ICU patients without confirmed VTE, 10 COVID-19 ward patients and 7 healthy controls. Mean age was comparable between the groups, while BMI was higher in COVID-19 patients than in healthy controls (Table 1). Levels of fibrinogen, D-dimer and anti-Xa were significantly higher in COVID-19 ICU patients than in COVID-19 ward patients and healthy controls. FVIII levels were significantly higher in COVID-19 ICU patients than in healthy controls, while FXIII levels were significantly lower. On admission to the ICU, clot density was significantly higher in COVID-19 ICU patients with and without confirmed VTE than in healthy controls (Figure 1 and Table 2). However, after adjustment for fibrinogen levels, this difference disappears. Clot lysis time was significantly longer in clots from COVID-19 ICU patients than in clots from healthy controls, regardless of fibrinogen levels (Table 2). COVID-19 ICU patients with confirmed VTE also showed a significant longer clot lysis time than COVID-19 ward patients. Interestingly, in the clot lysis assay, fibrinolysis did not occur in 25% of COVID-19 ICU patients with VTE versus 9.5% of COVID-19 ICU patients without VTE (Figure 2). This fibrinolysis shutdown was never observed in clots from healthy controls and COVID-19 ward patients. Fibrin fiber diameters were comparable between the groups. In the clots from plasma samples collected at admission to the ICU, there were no differences between COVID-19 ICU patients with and without VTE (Figure 2). However, when comparing clots prepared from plasma collected at the second time point (after VTE or at a similar time point for patients without VTE), we observed significant longer clot lysis times in patients with confirmed VTE (97.4 [88.5-158.8] min) than in patients without confirmed VTE (80.0 [76.0-97.8] min) (p=0.03). Finally, there were no significant changes between clots from plasma before and after VTE or between the two time points in patients without VTE, except for a decreased clot lysis time over time for COVID-19 ICU patients without confirmed VTE. Conclusion: Our results suggest that SARS-CoV-2 infection increases clot density and decreases clot susceptibility to fibrinolysis, and that these changes relate to the severity of the disease. Figure 1 Figure 1. Disclosures Kruip: Daiichi Sankyo: Research Funding; Bayer: Honoraria, Research Funding.

2017 ◽  
Vol 117 (02) ◽  
pp. 295-302 ◽  
Author(s):  
Katie A. Greenhalgh ◽  
Mark W. Strachan ◽  
Saad Alzahrani ◽  
Paul D. Baxter ◽  
Kristina F. Standeven ◽  
...  

SummaryBoth type 2 diabetes (T2DM) and Bß448Lys variant of fibrinogen are associated with dense fibrin clots, impaired fibrinolysis and increased cardiovascular risk. It was our objective to investigate whether BßArg448Lys adds to vascular risk by modulating fibrin network structure and/or fibrinolysis in diabetes. The primary aim was to study effects of BßArg448Lys on fibrin network characteristics in T2DM. Secondary aims investigated interactions between gender and BßArg448Lys substitution in relation to fibrin clot properties and vascular disease. Genotyping for BßArg448Lys and dynamic clot studies were carried out on 822 T2DM patients enrolled in the Edinburgh Type 2 Diabetes Study. Turbidimetric assays of individual plasma samples analysed fibrin clot characteristics with additional experiments conducted on clots made from purified fibrinogen, further examined by confocal and electron microscopy. Plasma clot lysis time in Bß448Lys was longer than Bß448Arg variant (mean ± SD; 763 ± 322 and 719 ± 351 seconds [s], respectively; p<0.05). Clots made from plasma-purified fibrinogen of individuals with Arg/Arg, Arg/Lys and Lys/Lys genotypes showed differences in fibre thickness (46.75 ± 8.07, 38.40 ± 6.04 and 25 ± 4.99 nm, respectively; p<0.001) and clot lysis time (419 ± 64, 442 ± 87 and 517 ± 65 s, respectively; p=0.02), directly implicating the polymorphism in the observed changes. Women with Bß448Lys genotype had increased risk of cerebrovascular events and were younger compared with Bß448Arg variant (67.2 ± 4.0 and 68.2 ± 4.4 years, respectively; p=0.035). In conclusion, fibrinogen Bβ448Lys variant is associated with thrombotic fibrin clots in diabetes independently of traditional risk factors. Prospective studies are warranted to fully understand the role of BβArg448Lys in predisposition to vascular ischaemia in T2DM with the potential to develop individualised antithrombotic management strategies.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Francesco Franchi ◽  
Rhodri King ◽  
Fladia Phoenix ◽  
Fabiana Rollini ◽  
Jung Rae Cho ◽  
...  

Background: Thrombus formation represent the final step in the atherothrombotic process and occurs secondary to a complex interaction between platelets and coagulation factors. Increased platelet reactivity and enhanced clot formation can both determine predisposition to vascular events. Direct platelet inhibition by modern antiplatelet therapy is now effective at controlling the cellular component of coagulation but the fibrin network is not generally targeted in arterial disease. Our aim was to investigate the effects of dabigatran on fibrin network characteristics in individuals dual antiplatelet therapy (DAPT). Methods: This was a prospective, randomized, double-blind study conducted in 30 patients on maintenance (at least 30 days) DAPT with aspirin (81mg/day) and clopidogrel (75mg/day). Patients were randomized to receive either dabigatran 150mg bid or matching placebo for 7 days. Fibrin clot properties were studied using a validated turbidimetric assay and the following parameters were recorded: lag phase and time to full clot formation, both of which measure clotting potential; clot maximum absorbance, representing fibrin network density and fibre thickness; clot lysis time to assess fibrinolytic efficiency. Results: Dabigatran treatment was associated with an increase in lag phase, compared with baseline, of 1013±167 sec , whereas no difference was detected in placebo treated patients (-17±14 sec, p<0.001 for dabigatran vs placebo). Similar results were obtained for clot formation time with an increase of 240±37 sec in dabigatran treated patients with no change following placebo treatment (-24±18 sec; p<0.001 comparing the two groups). The change in clot maximum absorbance after dabigatran and placebo treatment showed no differences (-0.02±0.01 and 0.00±0.01 au, respectively; p=0.2) and clot lysis time was similar. Conclusions: In patients on DAPT with aspirin and clopidogrel, additional treatment with dabigatran delays fibrin clot formation without affecting fibrinolysis. Therefore, triple therapy with dabigatran may be one option to reduce thrombosis potential in high risk individuals. Moreover, our assay, which can be conducted on stored samples, offers the opportunity to monitor response to dabigatran therapy.


2020 ◽  
Vol 120 (09) ◽  
pp. 1248-1256
Author(s):  
Anne Winther-Larsen ◽  
Morten Krogh Christiansen ◽  
Sanne Bøjet Larsen ◽  
Mette Nyegaard ◽  
Søs Neergaard-Petersen ◽  
...  

Abstract Background The ABO locus has been associated with increased risk of myocardial infarction (MI) in patients with coronary artery disease (CAD), but the underlying mechanisms are unknown. As altered fibrin clot structure has been demonstrated to predict MI in CAD patients, we examined the association between the ABO risk variant and fibrin clot properties, and investigated the effects of other CAD-associated risk variants. Methods We included 773 stable CAD patients. Patients were genotyped for 45 genome-wide CAD risk variants, including rs495828 at the ABO locus. We used a genetic risk score (GRS) for CAD calculated as the weighted sum of the number of risk alleles based on all 45 variants. Fibrin clot properties were evaluated using a turbidimetric assay. We studied clot maximum absorbance, a measure of clot density and fiber thickness, together with clot lysis time, an indicator of fibrinolysis potential. Results The rs495828 risk allele was present in 13.2% of patients and associated with higher clot maximum absorbance (adjusted effect size per risk allele: 1.05 [1.01 − 1.09], p = 0.01) but not with clot lysis time (p = 0.97). The rs12936587 (p = 0.04), rs4773144 (p = 0.02), and rs501120 (p = 0.04) were associated with clot lysis time; however, after Bonferroni correction, no significant associations were found between any of the remaining 44 CAD-associated variants and fibrin clot properties. The GRS was not associated with fibrin clot properties (p-values > 0.05). Conclusion The ABO risk allele was associated with a more compact fibrin network in stable CAD patients, which may represent a mechanism for increased MI risk in ABO risk variant carriers.


1979 ◽  
Vol 41 (04) ◽  
pp. 745-755 ◽  
Author(s):  
Dušan Keber ◽  
Mojca Stegnar ◽  
Irena Keber ◽  
Bojan Accetto

SummaryFibrinolysis was studied in 10 alpinists during regular physical activity of different intensity. Blood was sampled at rest and after exposure to submaximal workload on the treadmill on three occasions: before and after 6 months physical conditioning (moderate physical activity), and after 6 weeks of an alpinistic expedition (strenuous physical activity). Measurements included submaximal working capacity, fibrinogen, euglobulin clot lysis time (ELT), whole plasma clot lysis time, and estimations derived from ELT - percent increase in fibrinolytic activity after exercise (RFS), and absolute increase in fibrinolytic activity after exercise (PAR).Regular moderate activity increased the resting level of ELT, but strenuous activity decreased is. After each treadmill testing, a marked increase in fibrinolytic activity was observed. RFS was unaltered at all three testings. PAR increased after moderate activity, but decreased after strenuous activity.The results indicate that regular physical activity can lead from enhanced to decreased resting activity of plasminogen activator in blood. It is presumed that increased release of activator during prolonged stress causes partial depletion of endothelial stores with the consequence of decreased activator activity in the blood.


1965 ◽  
Vol 13 (02) ◽  
pp. 477-483
Author(s):  
Alwin B. Bogert

SummaryExperiments were conducted to determine why different lots of Borate Buffer reagent affect the clot lysis times obtained in the fibrinolytic assay of Streptokinase. Minerals naturally occurring in distilled water were screened individually to determine their influence on lysis. Copper was found to have a very pronounced effect in this regard on the fibrinolytic system in that low levels reduce the lysis time and high levels increase it.


2014 ◽  
Vol 112 (08) ◽  
pp. 287-296 ◽  
Author(s):  
Magdalena Celińska-Löwenhoff ◽  
Teresa Iwaniec ◽  
Agnieszka Padjas ◽  
Jacek Musiał ◽  
Anetta Undas

SummaryWe tested the hypothesis that plasma fibrin clot structure/function is unfavourably altered in patients with antiphospholipid syndrome (APS). Ex vivo plasma clot permeability, turbidity and susceptibility to lysis were determined in 126 consecutive patients with APS enrolled five months or more since thrombotic event vs 105 controls. Patients with both primary and secondary APS were characterised by 11% lower clot permeability (p<0.001), 4.8% shorter lag phase (p<0.001), 10% longer clot lysis time (p<0.001), and 4.7% higher maximum level of D-dimer released from clots (p=0.02) as compared to the controls. Scanning electron microscopy images confirmed denser fibrin networks composed of thinner fibres in APS. Clots from patients with “triple-antibody positivity” were formed after shorter lag phase (p=0.019) and were lysed at a slower rate (p=0.004) than in the remainder. Clots from APS patients who experienced stroke and/or myocardial infarction were 8% less permeable (p=0.01) and susceptible to lysis (10.4% longer clot lysis time [p=0.006] and 4.5% slower release of D-dimer from clots [p=0.01]) compared with those following venous thromboembolism alone. Multivariate analysis adjusted for potential confounders showed that in APS patients, lupus anticoagulant and “triple-positivity” were the independent predictors of clot permeability, while “triple-positivity” predicted lysis time. We conclude that APS is associated with prothrombotic plasma fibrin clot phenotype, with more pronounced abnormalities in arterial thrombosis. Molecular background for this novel prothrombotic mechanism in APS remains to be established.


2011 ◽  
Vol 106 (07) ◽  
pp. 90-101 ◽  
Author(s):  
Niraj Mishra ◽  
Ellen Vercauteren ◽  
Jan Develter ◽  
Riet Bammens ◽  
Paul J. Declerck ◽  
...  

SummaryThrombin activatable fibrinolysis inhibitor (TAFI) forms a molecular link between coagulation and fibrinolysis and is a putative target to develop profibrinolytic drugs. Out of a panel of monoclonal antibodies (MA) raised against TAFI-ACIIYQ, we selected MA-TCK11A9, MA-TCK22G2 and MA-TCK27A4, which revealed high affinity towards human TAFITI- wt. MA-TCK11A9 was able to inhibit mainly plasmin-mediated TAFI activation, MA-TCK22G2 inhibited plasmin- and thrombin-mediated TAFI activation and MA-TCK27A4 inhibited TAFI activation by plasmin, thrombin and thrombin/thrombomodulin (T/TM) in a dose-dependent manner. These MA did not interfere with TAFIa activity. Using an eightfold molar excess of MA over TAFI, all three MA were able to reduce clot lysis time significantly, i.e. in the presence of exogenous TM, MATCK11A9, MA-TCK22G2 and MA-TCK27A4 reduced clot lysis time by 47 ± 9.1%, 80 ± 8.6% and 92 ± 14%, respectively, compared to PTCI. This effect was even more pronounced in the absence of TM i.e. MATCK11A9, MA-TCK22G2 and MA-TCK27A4 reduced clot lysis time by 90 ± 14%, 140 ± 12% and 147 ± 29%, respectively, compared to PTCI. Mutagenesis analysis revealed that residues at position 268, 272 and 276 are involved in the binding of MA-TCK11A9, residues 147 and 148 in the binding of MA-TCK22G2 and residue 113 in the binding of MATCK27A4. The present study identified three MA, with distinct epitopes, that impair the activation of human TAFI and demonstrated that MATCK11A9 which mainly impairs plasmin-mediated TAFI activation can also reduce significantly clot lysis time in vitro.


1975 ◽  
Author(s):  
N. Aoki ◽  
M. Matsuda ◽  
M. Moroi ◽  
N. Yoshida

A fraction of human plasma prolongs the activator-induced clot lysis time and inhibits plasminogen activation by the plasminogen activators derived from various sources (urine and tissues). This fraction, designated as antiactivator fraction, was separatid from antiplasmin fractions (α2-macroglobulin and α1-antitrypsin) by gel filtration and affinity chromatography on Sepharose coupled with IgG of antiserum to α1-antitrypsin. Anti-activator fraction thus obtained exerted little antiplasmin activity but inhibited strongly activator-induced clot lysis.Inhibitory effect of plasma on urokinase-induced clot lysis (antiactivator activity) was assayed in various diseases and compared with antiplasmin activity. No correlation was found between the two activities, and it was concluded that the two activities are independent and are ascribed to two different entities.


Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 175-179 ◽  
Author(s):  
Ton Lisman ◽  
Laurent O. Mosnier ◽  
Thierry Lambert ◽  
Evelien P. Mauser-Bunschoten ◽  
Joost C. M. Meijers ◽  
...  

Recombinant factor VIIa (rFVIIa) is a novel prohemostatic drug for patients with hemophilia who have developed inhibitory antibodies. The postulation has been made that hemophilia is not only a disorder of coagulation, but that hyperfibrinolysis due to a defective activation of thrombin activatable fibrinolysis inhibitor (TAFI) might also play a role. In this in vitro study, the potential of rFVIIa to down-regulate fibrinolysis via activation of TAFI was investigated. rFVIIa was able to prolong clot lysis time in plasmas from 17 patients with severe hemophilia A. The prolongation of clot lysis time by rFVIIa was completely abolished by addition of an inhibitor of activated TAFI. The concentration of rFVIIa required for half maximal prolongation of clot lysis time (Clys½-VIIa) varied widely between patients (median, 73.0 U/mL; range, 10.8-250 U/mL). The concentration of rFVIIa required for half maximal reduction of clotting time (Cclot½-VIIa) was approximately 10-fold lower than the Clys½-VIIa value (median, 8.4 U/mL; range, 1.7-22.5 U/mL). Inhibition of TFPI with a polyclonal antibody significantly decreased Clys½-VIIa values (median, 2.6 U/mL; range, 0-86.9 U/mL), whereas Cclot½-VIIa values did not change (median, 7.2 U/mL; range, 2.2-22.5 U/mL). On addition of 100 ng/mL recombinant full-length TFPI, a nonsignificant increase of Clys½-VIIa values was observed (median, 119.2 U/mL; range, 12.3-375.0 U/mL), whereas Cclot½-VIIa values did not change (median, 8.8 U/mL; range, 2.6-34.6 U/mL). In conclusion, this study shows that rFVIIa both accelerates clot formation and inhibits fibrinolysis by activation of TAFI in factor VIII-deficient plasma. However, a large variability in antifibrinolytic potential of rFVIIa exists between patients.


Sign in / Sign up

Export Citation Format

Share Document