scholarly journals Platelet Transfusions Can Increase or Decrease the Inflammatory Response and Mortality in a Murine Model of Neonatal Polymicrobial Sepsis

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2147-2147
Author(s):  
Patricia E Davenport ◽  
Hsuan-Hao Fan ◽  
Emily Nolton ◽  
Henry Feldman ◽  
Viola Lorenz ◽  
...  

Abstract Thrombocytopenia affects 18-35% of all neonates in the Neonatal Intensive Care Unit and ~70% of those born extremely prematurely, with sepsis being a frequent cause. Platelet transfusions (PTx) are frequently given to septic preterm neonates at higher platelet count (PC) thresholds than those used in adults, in an attempt to reduce their bleeding risk. However, in the largest randomized trial of neonatal PTx thresholds, infants transfused at a higher PC threshold had a significantly higher mortality and/or major bleeding compared to infants transfused at a lower threshold. We hypothesized that the deleterious effects of PTx would be related to a potential "developmental mismatch" resulting from adult platelets being transfused into a neonate. Among other developmental differences, adult platelets (human and murine) exhibit significantly higher surface P-selectin expression following activation than neonatal platelets. P-selectin is essential for the interaction of platelets with immune cells. Thus, we hypothesized that adult platelets transfused into septic neonates would be consumed faster than endogenous neonatal platelets (due to higher potential for immune interaction), and would increase inflammation and mortality. To test these hypotheses, we used a published murine model of neonatal sepsis, consisting of injecting cecal slurry (CS) into C57BL/6 pups. CS batches were prepared by isolating the cecal content of adult C57BL/6 mice, which was weighted, aliquoted and frozen until use. Three different CS batches were prepared and injected IP into post-natal day 10 pups at a dose of 1.1 (CS1) or 1.0 mg/g (CS2 and 3). Two hours after infection, pups were transfused with washed platelets from adult GFP mice (5x10 7 platelets/g) or Tyrode's buffer (control). Weights, PCs and GFP platelet % were measured before, 4h and 24h post-infection. Blood was collected via terminal bleed at 24h, and plasma separated for quantification of 31 cytokines by multiplex. Despite identical preparation, CS batches varied greatly in their 24h mortality (11% vs 73% vs. 30% for CS1, 2 and 3, respectively). Moreover, PTx had different effects on the mortality of pups infected with different CS batches, increasing the 24h mortality of pups infected with CS1 (30% in transfused vs 11% in non-transfused, RR 2.70, 95% CI 1.02-7.15) but decreasing the mortality of pups infected with CS2 (46% vs. 73%) or CS3 (9% vs. 30%), with a combined RR of 0.52; 95% CI 0.30-0.91. Bacterial counts differed between CS batches, but did not correlate with mortality. Comparison of the microbiome composition using deep sequencing revealed an increased presence of pathogenic bacterial species (Legionella, Sutterella, and Helicobacter species) in CS2 and 3 compared to CS1, and a relative abundance of beneficial bacterial (Actinobacteria and Proteobacteria) in CS1. Different CS batches also elicited different cytokine responses, with significant differences noted in G-CSF, IL-1α, IL-1β, IL-3, IL-7, IL-12p70, and IL-15 levels (p<0.05). For all of these cytokines, except G-CSF, levels were lower in mice infected with CS1 compared to CS2 or 3. Next, we investigated the effects of PTx on the plasma cytokine profile of mice infected with CS1 or CS2/3 (combined), compared to their infected, non-transfused littermates. For nearly all cytokines, PTx increased the response after infection with CS1, but decreased it after infection with CS2/3, with a significant difference in mean global cytokine effect (p<0.0001). For individual cytokines, however, these differences only reached statistical significance for LIX (CXCL5, p=0.04) and approached significance for IL15 and IL17 (p=0.06). Finally, we developed a mathematical model to compare the consumption of endogenous neonatal platelets (GFP-) to that of transfused adult platelets (GFP+) in pups infected with CS1 vs. CS2. In both, the calculated percent consumption was higher for adult platelets than for neonatal platelets (54.8% vs. 32.6% for CS1 and 56.5% vs. 40.4% for CS2). In conclusion, our findings support the hypothesis that adult transfused platelets are consumed faster than endogenous platelets in early neonatal sepsis, and demonstrate that platelet transfusions can either enhance or attenuate the neonatal inflammatory response and the mortality in a model of murine polymicrobial sepsis, depending on the bacterial composition of the inoculum and/or the severity of the sepsis. Disclosures Stowell: Grifols: Speakers Bureau; Argenx: Speakers Bureau; Alexion: Consultancy.

2021 ◽  
Vol 9 ◽  
Author(s):  
Kyung Chul Moon ◽  
Jeong-Won Oh ◽  
Chan-Wook Park ◽  
Joong Shin Park ◽  
Jong Kwan Jun

Background: The chorionic plate (CP) has been denigrated by the well-known route of the extraplacental membranes from the decidua parietalis through the chorion to the amnion in the progression of ascending intrauterine infection among preterm births (PTBs). However, considering previous studies reporting the relationship among intra-amniotic inflammatory response (IAIR), the progression of inflammation in extraplacental membranes and early-onset neonatal sepsis (EONS), and the anatomic connection between extraplacental membranes and CP, there is a good chance that IAIR would be more likely and severe according to the progression of inflammation in CP, and this progression of inflammation in CP would be associated with a significant increase in EONS in neonates delivered due to either PTL or preterm-PROM. Unfortunately, there is no information about the relationship among IAIR, the progression of inflammation in CP, and EONS among spontaneous PTBs. The objective of the current study is to examine this issue.Method: The study population included 309 singleton pregnant women-delivered preterm neonates with the following conditions: (1) gestational age (GA) at delivery: 20.0~36.9 weeks; (2) spontaneous PTBs: PTL (151 cases) or preterm-PROM (158 cases); (3) available results of placental histologic examination; (4) without congenital anomaly; and (5) delivery within 60 h of amniocentesis. We examined IAIR, and the frequency of intra-amniotic inflammation (IAI) and EONS according to the progression of inflammation in CP [i.e., stage-0, inflammation-free CP; stage-1, inflammation restricted to subchorionic fibrin (SCF); stage-2, inflammation in connective tissue (CT) of CP but without chorionic vasculitis; and stage-3, chorionic vasculitis]. IAIR was determined by amniotic fluid (AF) matrix metalloproteinase-8 (MMP-8) concentration (ng/ml), and IAI was defined as an elevated AF MMP-8 concentration (≥23 ng/ml). EONS included either suspected or proven EONS.Results: (1) Each stage (stage-0 to stage-3) was present in 69.3% (214/309), 15.9% (49/309), 11.0% (34/309), and 3.9% (12/309) of the study population. (2) AF MMP-8 concentrations continuously elevated according to the progression of inflammation in CP [stage-0 vs. stage-1 vs. stage-2 vs. stage-3; median (ng/ml), range (ng/ml); 6.0 (0.3–4202.7) vs. 153.9 (0.3–6142.6) vs. 464.9 (5.8–3929.0) vs. 1,780.4 (35.1–5019.5); Kruskal–Wallis test, P < 0.001 and Spearman's rank-correlation test, P < 0.000001, r = 0.553]. (3) Moreover, the frequency of IAI and EONS gradually increased with the progression of inflammation in CP [stage-0 vs. stage-1 vs. stage-2 vs. stage-3; IAI, 30.5% (64/210) vs. 70.2% (33/47) vs. 96.7% (29/30) vs. 100% (12/12); EONS, 3.5% (7/200) vs. 25.5% (12/47) vs. 32.3% (10/31) vs. 40.0% (4/10); each for Pearson's chi-square test, P < 0.000001 and linear-by-linear association, P < 0.000001]. (4) Of note, multiple logistic regression analysis demonstrated that a more advanced stage in the progression of inflammation within CP was associated with a higher odds ratio (OR) for EONS [stage-1 vs. stage-2 vs. stage-3; OR, 7.215, 95% confidence-interval (CI) (2.177–23.908) vs. OR, 10.705, 95% CI (2.613–43.849) vs. OR, 27.189, 95% CI (2.557–289.124)] compared with stage-0 even after the adjustment for potential confounding variables.Conclusion: IAIR is more likely and severe according to the progression of inflammation in CP, and this progression of inflammation in CP is an independent risk factor for EONS in spontaneous PTBs. This finding suggests that CP may be another playground for the progression of ascending intrauterine infection in addition to extraplacental membranes, and the progression of inflammation in CP may be used for the prediction of EONS in spontaneous PTBs.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e35523 ◽  
Author(s):  
Jiali Zhu ◽  
Jiafeng Wang ◽  
Ying Sheng ◽  
Yun Zou ◽  
Lulong Bo ◽  
...  

2020 ◽  
Vol 60 (6) ◽  
pp. 287-92
Author(s):  
Andi Dwi Bahagia Febriani ◽  
Nilam Sartika Putri ◽  
Ema Alasiry ◽  
Dasril Daud

Background Neonatal sepsis is one of the major causes of morbidity and mortality in neonates. Exposure to maternal bacteria during pregnancy or delivery allows for colonization of the normal upper airway. Such bacteria become the major ecological species in the infant. If the colonizing bacteria invade the bloodstream, early-onset neonatal sepsis (EONS) could occur. Objective To evaluate for an association between colonization of the newborn nasopharynx and EONS, as well as for agreement between nasopharyngeal swab culture and blood culture isolate results. Methods This prospective cohort study was conducted in Dr. Wahidin Sudirohusodo General Hospital and Ibnu Sina Hospital, Makassar, South Sulawesi. Nasopharyngeal swab culture was taken within 2 hours of life from newborns who met the inclusion criteria, then they were followed up for signs of EONS. Blood culture was taken from subject with EONS. Results Of the 100 newborns, 69 (69%) had nasopharyngeal bacterial colonization, of whom 5.8% (4/69) experienced EONS. Of the remaining 31 (31%) without colonization, 9.7% (3/31) experienced EONS. There was no significant difference in frequency of EONS between newborns with and without nasopharyngeal colonization. Although Gram-negative bacteria were predominant among colonized newborns, there was no significant difference to numbers of Gram-positive bacteria as a causative agent of EONS. Only one patient with EONS had the same bacterial species in both the nasopharynx and blood culture isolate. Conclusion  Newborn nasopharyngeal colonization at birth is not associated with EONS.


2018 ◽  
Vol 71 (suppl 3) ◽  
pp. 1358-1365
Author(s):  
Fabrícia Magalhães Araújo ◽  
Mavilde da Luz Gonçalves Pedreira ◽  
Ariane Ferreira Machado Avelar ◽  
Márcia Lurdes de Cácia Pradella-Hallinan ◽  
Miriam Harumi Tsunemi ◽  
...  

ABSTRACT Objective: Analyze the influence of ear protectors on the baseline levels of salivary cortisol and response and total sleep time of preterm neonates during two periods of environmental management of a neonatal intermediate care unit. Method: A clinical, randomized, controlled and crossover study conducted with 12 preterm neonates. The use of ear protectors was randomized in two periods. Sleep evaluation was performed using one Alice 5 Polysomnography System and unstructured observation. Results: No significant difference was observed between the baseline levels of salivary cortisol and response in preterm neonates from the control and experimental groups, and no statistical significance was observed between the total sleep time of both groups. No relationship was observed between the baseline levels of cortisol and response and total sleep time. Conclusion: Ear protectors in preterm neonates did not influence the salivary cortisol level and total sleep time in the studied periods.


2018 ◽  
Vol 64 (10) ◽  
pp. 888-895 ◽  
Author(s):  
Fábio Gonçalves Coutinho ◽  
Edna Maria de Albuquerque Diniz ◽  
Ingrid Kandler ◽  
Marco Antônio Cianciarullo ◽  
Natália Rodrigues dos Santos

SUMMARY BACKGROUND: To determine the concentration of the Lipid Peroxidation Marker: Malondialdehyde (MDA), and Antioxidant Markers: Superoxide Dismutase (SOD), Glutathione Peroxidase (GPX), Catalase (CAL) in umbilical cord blood and in unstimulated saliva in the first 24 and 48 hours of life in the PTNB of mothers with and without risk factors for early-onset neonatal sepsis. METHODS: Cross-sectional study with the signing of informed consent by the pregnant women and application of a standard questionnaire classifying the PTNB in Group 1 or 2. RESULTS: Twenty-one PTNB were studied. Regarding gender, birth weight, need for oxygen, use of phototherapy, diagnosis of assumed sepsis, presence of fetal distress, number of pregnancies, type of delivery, use of corticosteroids, premature rupture of membranes, maternal fever, chorioamnionitis, APGAR at the 5th and 10th minute of life. Statistical analysis was performed with the Mann-Whitney test (p = 0.019) on the GPX variable of umbilical cord blood in the group of mothers with risk factors for early-onset neonatal sepsis. There was no statistical difference in the MDA, SOD, and CAT variables of the group with risk factors and in any variable of the group without risk factors. CONCLUSION: There was an increase of the GPX concentration in the blood from the umbilical vein in the group with risk factors for early-onset neonatal sepsis. There was no statistical significance in the comparison of saliva and umbilical cord blood. There was no statistically significant difference in MDA, SOD, CAT.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 98-98
Author(s):  
Patricia Davenport ◽  
Jorge Canas ◽  
Viola Lorenz ◽  
Zhi-Jian Liu ◽  
Chiara Badur ◽  
...  

Thrombocytopenia affects 20-30% of neonates admitted to the Neonatal Intensive Care Unit (NICU) and up to 70% of those born extremely prematurely, with sepsis being one of the most frequent causes. Since preterm neonates also have a high bleeding risk, it has been widely accepted that they should receive platelet transfusions at higher platelet count (PC) thresholds than older children or adults. However, there is no consensus regarding what the appropriate threshold should be, particularly in critically ill infants. Surveys and observational studies have revealed extraordinary world-wide variability in neonatal platelet transfusion thresholds, with North-American neonatologists typically using more liberal thresholds (i.e. PC<100x109/L) than European neonatologists. Here we hypothesized that the severity of thrombocytopenia at the time of platelet transfusion would influence the post-transfusion platelet kinetics and the effects of platelets on the inflammatory response of septic newborn mice. To test these hypotheses, we used a validated model of neonatal sepsis/peritonitis, consisting of injecting cecal slurry (CS) or 15% glycerol (control) IP into post-natal day 10 (P10) mice. The CS dose used in these studies induced severe sepsis with a high mortality. c-MPL KO pups (which lack the TPO receptor, pre-infection PC 92±38 x 103/µL) and WT B6 pups (pre-infection PC 748±169 x 103/µL) were used to model severe and mild thrombocytopenia at the time of transfusion, respectively. Two hours after infection, mice from both genotypes were transfused with washed platelets from adult GFP mice (5x107platelets/gram) or with Tyrode's buffer. PCs and GFP% were measured by flow cytometry 2 and 22 hrs post-transfusion. At 2 hours, as expected, transfused septic mice of both genotypes had higher PCs than non-transfused septic littermates (217±118 vs 24±9 x103/µL for c-MPLKO mice, p<0.0001, and 764±193 vs. 549±155 x103/µL for WT mice, p<0.01). By 22 hours post-transfusion, transfused septic c-MPL KO mice still had significantly higher PCs than their non-transfused septic littermates (127±71 vs. 21±12 x103/µL, p<0.01; n=7 per group), but there were no significant differences between transfused and non-transfused septic WT mice (415±139 vs. 310±113 x 103/µL, p=0.1;n=7 per group). Between 2 and 22 hrs post-transfusion, PCs dropped at a nearly three-fold higher rate in transfused septic WT mice than in transfused septic c-MPL KO mice (by 17±8 vs. 6±5 x103 platelets/µL/h). In that interval, adult transfused platelets (GFP+) decreased by a larger percentage than neonatal platelets (GFP-) in transfused septic mice of both genotypes (by 64±14% vs. 46±21% in WT mice, and by 53±27% vs. 28±28% in c-MPL KO mice, both p<0.01), although these observations don't account for ongoing neonatal platelet production. Examination of a panel of plasma cytokines 24h after infection revealed significantly increased levels of pro-inflammatory (IL-6, TNF-alpha, and MCP-1) and anti-inflammatory (IL-10) cytokines in non-transfused septic neonates of both genotypes, compared to controls. Interestingly, platelet transfusions significantly reduced the levels of these cytokines in septic WT mice compared to non-transfused littermates, but had no effect on the cytokine levels of septic c-MPLKO mice. Platelets have been recently shown to reduce TNF-alpha production by murine macrophages at high LPS concentrations (Xiang, 2013) and to sequester both pro- and anti-inflammatory cytokines released by monocytes in response to LPS (Carestia, 2019). Our findings suggest that, in neonatal sepsis, this might require PCs to be above a certain threshold. The consequences of these differences on the outcomes of neonatal sepsis are being investigated. Disclosures Stowell: Grifols: Honoraria. Sola-Visner:Sysmex America, Inc.: Other: Laboratory equipment on loan, Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2146-2146
Author(s):  
Patricia E Davenport ◽  
Emily Nolton ◽  
Henry Feldman ◽  
Zhi-Jian Liu ◽  
Martha Sola-Visner

Abstract Platelet transfusions (PTx) are frequently given to thrombocytopenic preterm neonates at higher platelet count (PC) thresholds than those used in adults, in an attempt to reduce their bleeding risk. However, in the largest randomized trial of neonatal PTx thresholds, infants transfused at a higher PC threshold had a significantly higher mortality and/or major bleeding compared to infants transfused at a lower threshold. Since platelets carry multiple cytokines and chemokines, and since activated adult platelets may have a higher ability to interact with immune cells than neonatal platelets (due to their higher P-selectin expression levels), we hypothesized that the deleterious effects of PTx in neonates would be related to pro-inflammatory effects. We further hypothesized that the effects of PTx on the systemic inflammatory response would be different in thrombocytopenic neonates with non-inflammatory conditions (e.g., intrauterine growth restriction, drugs, genetic syndromes) compared to neonates with underlying inflammation (e.g., sepsis, necrotizing enterocolitis). To test the effects of PTx in the absence of inflammation, we transfused healthy post-natal day 10 (P10) C57BL/6 pups with washed platelets (5x10 7/g, isolated from adult C57BL/6J mice or eGFP+ mice) or with Tyrode's buffer (TY control). Blood was collected via terminal bleed 2h, 4h, and 6h after transfusion, and plasma was separated for quantification of 31 pro- and anti-inflammatory cytokines by multiplex (n=5-10 mice per group/timepoint). Two hours after PTx, the transfused mice exhibited significantly higher levels of G-CSF, IL-1, IL-1, IL-6, IL-17, KC (CXCL1) and MCP-1 compared to controls, with the most striking increases observed in IL-6 (928±19 vs. 135±36 pg/dL, p<0.001) and KC (1201±239 vs 371±77 pg/dL, p=0.001). At 4h post-transfusion, the levels of most cytokines were decreasing, with the exception of G-CSF (1940±276 vs. 825±126 pg/dL, p=0.003), MCP-1 (185±39 vs. 58±14 pg/dL, p=0.003), and IL-17 (2.12±1 vs. 0.66±0.3 pg/dL, p=0.002), which peaked at four hours. All cytokines were decreasing by 6h. Next, to model neonates with inflammatory conditions, we injected P10 pups with lipopolysaccharide (LPS) IP at a sub-lethal dose (1µg/g), which induced mild weight loss, thrombocytopenia (~ 50% drop in PC), and leukopenia followed by leukocytosis. Two hours after LPS injection, pups were transfused with washed platelets from adult C57BL/6 mice or TY (as above). Blood was obtained by terminal phlebotomy 4h, 8h or 18h post LPS injection and plasma was separated and stored for cytokine quantification by multiplex. 4h after LPS, PTx pups had significantly higher levels of leukemia inhibitory factor (LIF, a member of the IL-6 family) compared to TY controls (35±6 pg/mL vs. 17±3.9 pg/mL, p<0.01). At both 4 and 8h, IL-6 and G-CSF levels were extremely high and at or above the upper limit of the standard curve in both groups. By 18h post-LPS, the majority of cytokines had decreased to near-normal levels in TY control pups, while IL-6, IL-5, KC (CXCL1) and IL-10 remained significantly elevated in PTx mice (IL-6: 601±114 vs. 187±38 pg/mL, p=0.0007; IL-5: 659±257 vs. 486±191 pg/mL, p=0.01; KC: 4569±1370 vs. 2686±827 pg/mL, p=0.04; IL-10: 729±283 vs. 330±131 pg/mL, p=0.009). Since IL-10 is an anti-inflammatory cytokine, we also evaluated the relation of IL-6 to IL-10 in PTx vs. TY control mice. This analysis showed that IL-6 levels were 2.3 times higher for any given IL-10 level in pups who received PTx compared to controls. In conclusion, our findings suggest that platelet transfusions induce an inflammatory response in newborn mice without underlying inflammation, characterized mostly by elevations in IL-6, G-CSF and KC. In newborn pups with underlying sub-lethal inflammation, platelet transfusions seem to prolong the inflammatory response. These observations may provide an explanation for the increased morbidity and mortality in human neonates receiving liberal PTx. Studies to identify the mechanisms through which platelets induce these responses are ongoing. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document