scholarly journals Transcriptional and Metabolic Profiling of Nicotinamide-Enhanced Natural Killer (NAM-NK) Cells (GDA-201)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4791-4791
Author(s):  
Dima Yackoubov ◽  
Aviad Pato ◽  
Julia Rifman ◽  
Sherri Cohen ◽  
Astar Hailu ◽  
...  

Abstract Adoptive transfer of NK cells is a promising immunotherapeutic modality, however limited NK cell persistence and proliferation in vivo have historically been barriers to clinical success. Nicotinamide (NAM), an allosteric inhibitor of NAD-dependent enzymes, has been shown to preserve cell function and prevent differentiation in ex vivo culture of NK (NAM-NK) and other cells. Clinical responses were observed in a Phase 1 trial of NAM-NK (GDA-201) in patients with refractory non-Hodgkin lymphoma (Bachanova, et. al., Blood 134:777, 2019). We now use transcriptional and metabolic profiling to characterize the mechanisms underlying the activity of NAM-NK. CD3 negative lymphocytes obtained from healthy donors were cultured for 14 days with IL-15 in the presence or absence of NAM (7 mM). Next generation sequencing (NGS), liquid chromatography-mass spectrometry (LC-MS)-based metabolite quantification, and glycolytic/mitochondrial respiration measurements were performed. Transcriptome and pathway enrichment analyses were performed with Ingenuity Pathway Analysis software. Extracted cellular and medium metabolites were analyzed on a Thermo Q-Exactive Plus mass spectrometer coupled with a Vanquish UHPLC system. Extracellular acidification (ECAR) and oxygen consumption rates (OCR) were quantified using a Seahorse Extracellular Flux Analyzer. Glycolysis/citric acid cycle (TCA) rates were measured using isotope-labelled glucose incorporation assays. Transcriptome analyses defined 1,204 differentially expressed (DE) genes in NAM-NK vs. control NK. Biological/functional enrichment and pathway analyses of DE-genes predicted upregulation of cell cycle, DNA replication (CDK4/CDKN2D, CyclinD/E, MAD2L), RNA transcription, translation (SMN1/2, ABCF1, EIF4B, RPL13, RPS6), protein synthesis (EIF2, PABPC1, SOS, 60S complex) mitochondrial energy metabolism (NDUFB8, ATP5G2/E, COX7B/C) migration, homing (CD62L, CD44, DNAM1), and cytokine/chemokine response (IL18R, CXCR3, CCR5, XCL1, SOCS3, LFA1) pathways, with concomitant downregulation of cell exhaustion, senescence (BATF1, FOXP1, STAT1, CD86, LGALS9, LAG3), apoptosis, necrosis (CASP1, MDM2, IKK3), stress response (CALR, HSP90, HSPH1), and lymphoid cellular maturation (IL-2Ra, CD40L, GATA3) pathways in NAM-NK. Metabolomic analyses showed a significant increase of intracellular NAD, NADH, NADP, NADPH, high-energy triphosphates (ATP, UTP, GTP) and overall energy charge ([ATP+0.5*ADP]/[ATP+ADP+AMP]) in NAM-NK. Cellular metabolic fitness analyses revealed increased basal and ATP-linked respiration, mitochondrial maximal respiratory capacity, and glycolytic capacity in NAM-NK compared to control NK. In addition, NAM increased the rate of glucose incorporation into TCA cycle intermediates (acetyl-CoA, succinyl-CoA), consistent with a more rapid glycolysis rate, increased TCA cycling, and improved glucose consumption efficiency. Taken together, results of transcriptome, metabolomic, mitochondrial respiration, and glycolytic rate analyses suggest that NAM pleiotropically modulates key cellular metabolic functions in ex vivo-expanded NK cells, resulting in increased response to cytokine stimulation and enhanced potency. NAM inhibits differentiation, cellular stress, and exhaustion pathways that are typically activated in culture. Moreover, NAM increases cellular metabolic fitness, energy charge, and efficiency of glucose consumption, potentially imparting a protective effect against oxidative stress in the tumor microenvironment. These data offer insight into the mechanism of improved persistence, proliferation, and cytotoxicity observed in in vivo and clinical studies of GDA-201. Disclosures Yackoubov: Gamida Cell: Current Employment. Pato: Gamida Cell: Current Employment. Rifman: Gamida Cell: Current Employment. Cohen: Gamida Cell: Current Employment. Hailu: Gamida Cell: Current Employment. Persi: Gamida Cell: Current Employment. Berhani-Zipori: Gamida Cell: Current Employment. Edri: Gamida Cell: Current Employment. Peled: Biokine Therapeutics Ltd: Current Employment; Gamida Cell: Research Funding. Cichocki: Gamida Cell: Research Funding; Fate Therapeutics, Inc: Patents & Royalties, Research Funding. Rabinowitz: Gamida Cell: Research Funding. Lodie: Gamida Cell: Current holder of stock options in a privately-held company, Ended employment in the past 24 months. Adams: Gamida Cell: Current Employment. Simantov: Gamida Cell: Current Employment. Geffen: Gamida Cell: Current Employment.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 580-580
Author(s):  
Mark Wunderlich ◽  
Mahesh Shrestha ◽  
Lin Kang ◽  
Eric Law ◽  
Vladimir Jankovic ◽  
...  

Abstract Abstract 580 Generating a large number of pure, functional immune cells that can be used in human patients has been a major challenge for NK cell-based immunotherapy. We have successfully established a cultivation method to generate human NK cells from CD34+ cells isolated from donor-matched cord blood and human placental derived stem cells, which were obtained from full-term human placenta. This cultivation method is feeder-free, based on progenitor expansion followed by NK differentiation supported by cytokines including thrombopoietin, stem cell factor, Flt3 ligand, IL-7, IL-15 and IL-2. A graded progression from CD34+ hematopoietic progenitor cells (HSC) to committed NK progenitor cells ultimately results in ∼90% CD3-CD56+ phenotype and is associated with an average 10,000-fold expansion achieved over 35 days. The resulting cells are CD16- and express low level of KIRs, indicating an immature NK cell phenotype, but show active in vitro cytotoxicity against a broad range of tumor cell line targets. The in vivo persistence, maturation and functional activity of HSC-derived NK cells was assessed in NSG mice engineered to express the human cytokines SCF, GM-CSF and IL-3 (NSGS mice). Human IL-2 or IL-15 was injected intraperitoneally three times per week to test the effect of cytokine supplementation on the in vivo transferred NK cells. The presence and detailed immunophenotype of NK cells was assessed in peripheral blood (PB), bone marrow (BM), spleen and liver samples at 7-day intervals up to 28 days post-transfer. Without cytokine supplementation, very few NK cells were detectable at any time-point. Administration of IL-2 resulted in a detectable but modest enhancement of human NK cell persistence. The effect of IL-15 supplementation was significantly greater, leading to the robust persistence of transferred NK cells in circulation, and likely specific homing and expansion in the liver of recipient mice. The discrete response to IL-15 versus IL-2, as well as the preferential accumulation in the liver have not been previously described following adoptive transfer of mature NK cells, and may be unique for the HSC-derived immature NK cell product. Following the in vivo transfer, a significant fraction of human CD56+ cells expressed CD16 and KIRs indicating full physiologic NK differentiation, which appears to be a unique potential of HSC-derived cells. Consistent with this, human CD56+ cells isolated ex vivo efficiently killed K562 targets in in vitro cytotoxicity assays. In contrast to PB, spleen and liver, BM contained a substantial portion of human cells that were CD56/CD16 double negative (DN) but positive for CD244 and CD117, indicating a residual progenitor function in the CD56- fraction of the CD34+ derived cell product. The BM engrafting population was higher in NK cultures at earlier stages of expansion, but was preserved in the day 35- cultured product. The frequency of these cells in the BM increased over time, and showed continued cycling based on in vivo BrdU labeling 28 days post-transfer, suggesting a significant progenitor potential in vivo. Interestingly, DN cells isolated from BM could be efficiently differentiated ex vivo to mature CD56+CD16+ NK cells with in vitro cytotoxic activity against K562. We speculate that under the optimal in vivo conditions these BM engrafting cells may provide a progenitor population to produce a mature NK cell pool in humans, and therefore could contribute to the therapeutic potential of the HSC-derived NK cell product. The in vivo activity of HSC-derived NK cells was further explored using a genetically engineered human AML xenograft model of minimal residual disease (MRD) and initial data indicates significant suppression of AML relapse in animals receiving NK cells following chemotherapy. Collectively, our data demonstrate the utility of humanized mice and in vivo xenograft models in characterizing the biodistribution, persistence, differentiation and functional assessment of human HSC-derived cell therapy products, and characterize the potential of HSC-derived NK cells to be developed as an effective off-the-shelf product for use in adoptive cell therapy approaches in AML. Disclosures: Wunderlich: Celgene Cellular Therapeutics: Research Funding. Shrestha:C: Research Funding. Kang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Law:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Jankovic:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Zhang:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Herzberg:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Abbot:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Hariri:Celgene Cellular Therapeutics: Employment, Equity Ownership, Patents & Royalties. Mulloy:Celgene Cellular Therapeutics: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 6-6 ◽  
Author(s):  
Veronika Bachanova ◽  
Joseph Maakaron ◽  
David H. McKenna ◽  
Qing Cao ◽  
Todd E. DeFor ◽  
...  

Background: The innate capacity of natural killer (NK) cells to kill tumor targets has been translated into cancer immunotherapy. GDA-201 is a novel allogeneic NK cell product derived from NK cells from healthy donors, expanded ex-vivo with nicotinamide (NAM) and IL-15. We previously reported improved killing function, in vivo proliferation, organ trafficking, and augmented resistance against exhaustion in pre-clinical models. We conducted a phase 1 study of GDA-201 in combination with monoclonal antibodies to enhance NK cell targeting through antibody-dependent cellular cytotoxicity (ADCC). We now report safety data in patients (pts) with relapsed or refractory (R/R) non-Hodgkin lymphoma (NHL) and multiple myeloma (MM), and report efficacy outcomes in pts with NHL. Methods: Following donor apheresis, CD3-depleted mononuclear cells were cultured for 14-16 days with NAM (5mM) and IL-15 (20ng/ml), resulting in a 40-fold increase in NK cells and increased expression of CD62L from 2.9% to 21%. GDA-201 contained ~98% NK cells, and CD3 content was maintained at <0.5% (<5x105/kg/dose). Pts with R/R B-cell NHL or MM received lymphodepleting (LD) therapy with cyclophosphamide (400mg/m2 IV x 3d) and fludarabine (30 mg/m2 /d IV x 3d), followed by GDA-201 (days 0 and 2) and low-dose IL-2 (6 million units sc x 3 doses). Pts with NHL or MM received rituximab (375 mg/m2) or elotuzumab (10 mg/kg), respectively, x 3 weekly infusions. Results: 30 pts were enrolled:15 with NHL and 15 with MM, in 3 cohorts of escalating GDA-201 dose; 15 pts received the maximum target dose (median dose 12.4 [range 2.0-26.0] x 107 cells/kg). There were no dose limiting toxicities. The most common grade 3/4 adverse events were thrombocytopenia (n=9), hypertension (n=5), neutropenia (n=4), febrile neutropenia (n=4), and anemia (n=3). There were no neurotoxic events, confirmed cytokine release syndrome, graft versus host disease, or marrow aplasia. One patient died of E-coli sepsis. In pts with NHL, histologies included diffuse large B cell lymphoma (DLBCL) (de novo n=5, transformed n=3), follicular lymphoma (FL) (n=6), and mantle cell lymphoma (n=1). Median age was 64 (range 48-83 years). Pts had a median of 3 lines of prior therapy (range 1-8); most were multiply relapsed or refractory (n=2), and 87% had advanced stage. Median follow-up was 10.8 months (range 4.3-27.5 months). Ten pts had complete response (CR): 6/6 pts with FL and 4/8 with DLBCL; 1 pt had partial response (PR), and overall response rate in pts with NHL was 73.3%. Median duration of response was 8.7 months (range 4.3-25 months). Flow cytometry confirmed the persistence of GDA-201 in peripheral blood for 7-10 days (range 2-92% donor NK cells on day 7), as well as enhanced in vivo proliferation (median Ki 67 99%). Flow cytometry of biopsied tissues at day 4 demonstrated trafficking to bone marrow and lymph nodes. Four pts underwent re-treatment with GDA-201 without LD chemotherapy; GDA-201 cells were detectable in blood after the re-treatment and likely contributed to deepening of response in 2 patients. Post-GDA-201 therapy included allogeneic (n=2) and autologous (n=1) hematopoietic stem cell transplantation. One-year estimates of progression-free survival and overall survival were 66% (95% CI 36-84%) and 82% (95% CI 42-95%), respectively. Conclusions: Cellular therapy using GDA-201 with monoclonal antibodies to enhance ADCC was well-tolerated, and demonstrated significant clinical activity in heavily pretreated pts with advanced NHL. Data support the future testing of multiple infusions to potentially enhance anti-tumor effect. The omission of lymphodepleting chemotherapy is feasible and contributes to safety of this approach. Phase II studies in aggressive and indolent NHL cohorts are planned. Disclosures Bachanova: Incyte: Research Funding; FATE: Research Funding; Kite: Membership on an entity's Board of Directors or advisory committees; Karyopharma: Membership on an entity's Board of Directors or advisory committees; BMS: Research Funding; Gamida Cell: Membership on an entity's Board of Directors or advisory committees, Research Funding. McKenna:Gamida: Other: Cell Manufacturing; Fate Therapeutics: Other: Cell Manufacturing; Intima: Other: Cell Manufacturing; Magenta: Other: Cell Manufacturing. Janakiram:Takeda, Fate, Nektar: Research Funding. Simantov:Gamida Cell: Current Employment. Lodie:Gamida Cell: Current Employment. Miller:Vycellix: Consultancy; Nektar: Honoraria, Membership on an entity's Board of Directors or advisory committees; Onkimmune: Honoraria, Membership on an entity's Board of Directors or advisory committees; GT Biopharma: Consultancy, Patents & Royalties, Research Funding; Fate Therapeutics, Inc: Consultancy, Patents & Royalties, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 341-341
Author(s):  
Lucila Kerbauy ◽  
Mecit Kaplan ◽  
Pinaki P Banerjee ◽  
Francesca Lorraine Wei Inng Lim ◽  
Ana Karen Nunes Cortes ◽  
...  

Abstract Chimeric antigen receptors to redirect T cell specificity against tumor antigens have shown remarkable clinical responses against CD19+ malignancies. However, the manufacture of an engineered autologous T cell product is expensive and cumbersome. Natural killer (NK) cells provide an alternative source of immune effectors for the treatment of cancer. NK cell cytolytic function can be directed towards specific targets by exploiting their ability to mediate antibody-dependent cellular cytotoxicity (ADCC) through the NK cell Fc receptor, CD16 (FcγRIIIa). AFM13 is a tetravalent bispecific antibody construct based on Affimed's ROCK™ platform. AFM13 is bispecific for CD30 and CD16A, designed for the treatment of CD30 expressing malignancies. It binds CD16A on the surface of NK cells, thus activating and recruiting them to CD30 expressing tumor cells and mediating subsequent tumor cell killing. Since autologous NK effector function is impaired in many patients with malignancies, we propose to overcome this by the use of allogeneic NK cells in combination with AFM13. Cord blood (CB) is a readily available ("off-the-shelf") source of allogeneic NK cells that can be expanded to large, highly functional therapeutic doses. The feasibility and safety of therapy with allogeneic ex vivo expanded CB-derived NK cells have been shown by our group and others. In this study, we hypothesized that we can redirect the specificity of NK cells against CD30+ malignancies by preloading ex vivo activated and expanded CB-derived NK cells with AFM13 prior to adoptive infusion. Briefly, mononuclear cells were isolated from fresh or frozen CB units by ficoll density gradient centrifugation. CD56+ NK cells were cultured with rhIL-12, rhIL-18 and rhIL-15 for 16 hrs, followed by ex vivo expansion with rhIL-2 and irradiated (100 Gy) K562-based feeder cells expressing membrane-bound IL-21 and CD137-ligand (2:1 feeder cell:NK ratio). After 14 days, NK cells were loaded with serial dilutions of AFM13 (0.1, 1, 10 and 100 mg/ml). After washing twice with PBS, we tested the effector function of AFM13-loaded NK-cells (AFM13-NK) compared to expanded CB-NK cells without AFM13 against Karpas-299 (CD30 positive) and Daudi (CD30 negative) lymphoma cell lines by 51Cr release and intracellular cytokine production assays. AFM13-NK cells killed Karpas-299 cells more effectively at all effector:target ratios tested than unloaded NK cells (Figure 1) and produced statistically more INFγ and CD107a (P=0.0034; P=0.0031 respectively, n=4). In contrast, AFM13-NK cells and unloaded NK cells exerted similar cytotoxicity against Daudi cells. Next, we established the optimal concentration of AFM13 for loading (determined to be 100 μg/ml) and the optimal incubation time to obtain maximal activity (1 h) in a series of in vitro experiments. We also confirmed that the activity of AFM13-NK cells against Karpas-299 cells remains stable for at least 72h post-wash (Figure 2). Additionally, we characterized the phenotype of AFM13-NK vs. unloaded NK cells by flow cytometry using monoclonal antibodies against 22 markers, including markers of activation, inhibitory receptors, exhaustion markers and transcription factors. Compared to unloaded NK cells, AFM13-NK cells expressed higher levels of CD25, CD69, TRAIL, NKp44, granzyme B and CD57, consistent with an activated phenotype. We next tested the in vivo anti-tumor efficacy of AFM13-NK cells in an immunodeficient mouse model of FFluc-Karpas-299. Briefly, six groups of NOD/SCID/IL2Rγc null mice (n=5 per group) were transplanted by tail-vein injection with 1 x 10e5 FFluc-transduced Karpas cells. Group 1 and 6 received tumor alone or tumor + AFM13 and served as a control. Groups 2-4 receive Karpas FFLuc with either expanded NK cells or AFM13-NK cells (NK cells loaded with AFM13) or expanded NK cells and AFM13 injected separately. Group 5 received AFM13-NK cells without tumor. Initial studies confirm the antitumor activity of AFM13-NK cells. In summary, we have developed a novel premixed product, comprised of expanded CB-NK cells loaded with AFM13 to 'redirect' their specificity against CD30+ malignancies. The encouraging in vitro and in vivo data observed in this study, provide a strong rationale for a clinical trial to test the strategy of an off-the-shelf adoptive immunotherapy with AFM13-loaded CB-NK cells in patients with relapsed/refractory CD30+ malignancies. Disclosures Champlin: Sanofi: Research Funding; Otsuka: Research Funding. Koch:Affimed GmbH: Employment. Treder:Affimed GmbH: Employment. Shpall:Affirmed GmbH: Research Funding. Rezvani:Affirmed GmbH: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 194-194
Author(s):  
Pamela Wong ◽  
Carly C. Neal ◽  
Lily Chang ◽  
Julia A Wagner ◽  
Melissa M. Berrien-Elliott ◽  
...  

Abstract Natural Killer (NK) cells are innate lymphoid cells that respond to hematologic cancers via cytotoxicity (perforin/granzyme and death receptors) and cytokine/chemokine production, yet the molecular determinants underlying their proliferation, function, and persistence are poorly understood. There are promising reports of pre-clinical and clinical NK cell responses to leukemia and lymphoma, which represent a nascent cellular therapy for these blood cancers. The T-box transcription factors (TFs) Eomes and T-bet are expressed by NK cells throughout their lifespan, and are required for development as evidenced by NK cell loss in Eomes and T-bet deficient mice. However, the roles of these TFs in mature human NK cell molecular programs and functions remain unclear. We hypothesized Eomes and T-bet, which are the only T-box TFs expressed in NK cells, are critical regulators of NK cell homeostasis and functionality, and are necessary for proper mature NK cell responses. To address this, we utilized the CRISPR-Cas9 system to genetically delete both Eomes and T-bet in primary human NK cells isolated from healthy donors, and investigated their role beyond guiding NK cell development, specifically in the anti-leukemia response. Gene-editing of primary human NK cells has been technically challenging, thus most reports that modified NK cells were performed with cell lines, in vitro-differentiated, or highly expanded NK cells that likely do not reflect primary human NK cell biology. Here, we introduced Cas9 mRNA and sgRNA targeting T-bet and Eomes by electroporation into unexpanded primary human NK cells isolated from healthy donors using the MaxCyte GT system. We observed highly efficient reductions of Eomes and T-bet protein expression, quantified by flow cytometry (p < 0.0001, Fig A-B) without viability differences between control (sgRNA targeting TRAC, an unexpressed locus in NK cells), and Eomes/T-bet double CRISPR-edited (DKO) cells after one week in vitro. To study Eomes and T-bet in NK cell anti-leukemia response, control or DKO primary human NK cells were engrafted into NSG mice, supported with human IL-15, and challenged with K562 leukemia cells. Utilizing bioluminescent imaging to visualize leukemia burden, we observed that NK cells lacking both TFs were unable to suppress leukemia growth in vivo. To understand the mechanism responsible for impaired leukemia control, we investigated in vivo persistence and proliferation, cytotoxic effector molecule expression, as well as ex vivo degranulation and cytokine production of DKO NK cells compared to control NK cells. DKO or control human NK cells were transferred into NSG mice and supported with human IL-15. After 2-3 weeks, significantly fewer (<30%) DKO NK cells persisted compared to control NK cells: spleen (5-fold decrease, control 240e3±65e3 vs DKO 47e3±15e3 NK cells, p<0.01, Figure C), blood (6-fold decrease, p<0.01), and liver (4-fold decrease, p<0.05). Using intracellular flow cytometry, double T-bet/Eomes CRISPR-edited NK cells that lacked both Eomes and T-bet protein after in vivo transfer were identified. A proliferative defect was evident in flow-gated DKO (62±6% undivided), compared to unedited (WT) NK cells (4±2% undivided) assessed by CellTrace Violet dilution (Figure D). In addition, there were marked reductions in granzyme B and perforin protein (p<0.001) in flow-gated DKO NK cells compared to controls. To assess DKO NK cell functional capacity, we performed an ex vivo functional assay on NK cells from spleens of the NSG mice as effectors, and K562 targets or IL-12/15/18 stimulation for 6 hours. Degranulation to K562 targets was impaired (p<0.05), and IFN-γ production was reduced (p<0.0001) after cytokine stimulation in flow-gated DKO NK cells (Figure E). Thus, CRISPR-editing of unexpanded, primary human NK cells revealed that Eomes and T-bet are required by mature human NK cells for their function and homeostasis, distinct from their role in development. This is translationally relevant, as defects in proliferation and function of human DKO NK cells manifested markedly reduced response against human leukemia cells in vivo in xenografts. These findings expand our understanding of key molecular regulators of mature NK cell homeostasis and function, with the potential to provide new avenues to enhance NK cell therapy. Figure 1 Figure 1. Disclosures Berrien-Elliott: Wugen: Consultancy, Patents & Royalties: 017001-PRO1, Research Funding. Foltz-Stringfellow: Kiadis: Patents & Royalties: TGFbeta expanded NK cells; EMD Millipore: Other: canine antibody licensing fees. Fehniger: HCW Biologics: Research Funding; Compass Therapeutics: Research Funding; Affimed: Research Funding; ImmunityBio: Research Funding; Wugen: Consultancy, Current equity holder in publicly-traded company, Patents & Royalties: related to memory like NK cells, Research Funding; Kiadis: Other; OrcaBio: Other; Indapta: Other.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 777-777
Author(s):  
Veronika Bachanova ◽  
David H. McKenna ◽  
Xianghua Luo ◽  
Todd E. DeFor ◽  
Fiona He ◽  
...  

Background: NK cells have the capacity to kill tumor targets, representing a novel immunotherapeutic approach to cancer. We have shown promising clinical activity in AML with a previous NK cell preparation. Limitations of NK therapies have included specificity, persistence after infusion, and potential for maximal activity of NK cells in vivo. GDA-201 is a cellular product composed of natural killer (NK) cells from healthy donors expanded ex vivo with nicotinamide (NAM) and IL-15; this is a unique ex vivo activation strategy to induce persistence of potent anti-tumor activity. Prior in vitro studies and pre-clinical models demonstrated that NAM-exposed NK cells exhibited augmented resistance against exhaustion and improved killing function, proliferation, and organ retention. We now report safety and efficacy from a phase 1 clinical trial of GDA-201 in patients (pts) with relapsed or refractory (R/R) NHL or MM. Methods: Following donor apheresis, CD3-depleted mononuclear cells were cultured for 14-16 days with NAM (5mM) and IL-15 (20ng/ml), resulting in a 40-fold increase in NK cells and increased expression of CD62L from 2.9% to 21%. GDA-201 contained ~98% NK cells, and CD3 content was maintained at <0.5% (<5x105/kg/dose). Pts with R/R CD 20-positive NHL or refractory MM received cyclophosphamide (400mg/m2 IV x 3d) and fludarabine (30 mg/m2 /d IV x 3d), followed by two doses of GDA-201 (Days 0 and 2) and low-dose IL-2 (6 million units sc). Pts with NHL or MM received rituximab (375 mg/m2 x 4 weekly or elotuzumab (10 mg/kg x 3 weekly), respectively, to enhance NK cell targeting through antibody-dependent cellular cytotoxicity (ADCC). Results: 20 pts were enrolled: 7 with NHL (4 follicular, 2 transformed, 1 diffuse large cell lymphoma) and 13 with MM, in 3 cohorts of escalating GDA-201 dose; 11 pts received the maximum target dose (median 1.7 x 108 cells/kg, range 1.6-2.0 x 108 cells/kg). There were no dose limiting toxicities. The most common grade 3/4 adverse events were neutropenia and thrombocytopenia, febrile neutropenia (n=2), increased creatinine, hyponatremia, pulmonary edema; all events were transient. One pt had grade 2 cytokine release syndrome at day 18, presenting with fever, hypoxemia and hypotension, responding to tocilizumab; pt later died of E Coli sepsis. There were no neurotoxic events, GVHD or marrow aplasia. Among 7 NHL pts, there were 3 CR and 2 PR with overall response rate of 71%. Median duration of response was 12 months (CR patients) and 5 months (PR patients). Figure 1A illustrates a 57-year-old man with history of CLL and Richter's transformation (large cell lymphoma), pre- GDA-201 and 6 months post therapy; the pt had continued response with 80% tumor shrinkage at 6 months. In MM patients, 1 patient with extramedullary disease had CR and 4 had SD with median duration 2.5 months. In our previous study using overnight-activated NK cells, persistence 7 days after adoptive transfer was limited. Using GDA-201, flow cytometry confirmed persistence of donor NAM-NK in peripheral blood up to day 7-10 (day 7 range 2-55% donor NK cells; Figure 1B), as well as enhanced in vivo proliferation (median Ki67 99%). Conclusions: Cellular therapy using GDA-201 with monoclonal antibodies was safe, and demonstrated early evidence of clinical activity in heavily pre-treated pts with advanced NHL and MM. The recommended dose of GDA-201 for phase 2 is 2.0 x 108 cells/kg. The clinical responses showed that NK cell targeting through ADCC can be efficacious and increase response. Laboratory studies showed that GDA-201 had better persistence than observed in our previous studies using overnight activated cytokine alone stimulated NK cells. This study demonstrated that GDA-201 has an efficacy signal, and larger phase II studies are warranted. Disclosures Bachanova: Incyte: Research Funding; Gamida Cell: Research Funding; Novartis: Research Funding; GT Biopharma: Research Funding; Celgene: Research Funding; Kite: Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. McKenna:Fate Therapeutics: Research Funding; Magenta Therapeutics: Research Funding; CIBMTR BMT CTN (NIH): Other: Medical Monitor; Icahn School of Medicine, New York, New York: Consultancy; National Eye Institute (NIH): Other: DSMB (2); Gamida: Research Funding; NMDP: Other: Donor and Patient Safety Monitoring Advisory Group; Intima: Patents & Royalties: Royalities, Research Funding. Brachya:Gamida Cell: Employment, Equity Ownership. Peled:Gamida Cell: Employment, Equity Ownership. Miller:GT BioPharma: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; CytoSen: Membership on an entity's Board of Directors or advisory committees; Dr. Reddys Laboratory: Membership on an entity's Board of Directors or advisory committees; Moderna: Membership on an entity's Board of Directors or advisory committees; Fate Therapeutics, Inc: Consultancy, Research Funding; OnKImmune: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3607-3607
Author(s):  
Grace Lee ◽  
Sheela Karunanithi ◽  
Zachary Jackson ◽  
David Wald

NK cells are a subset of lymphocytes that directly recognize and lyse tumor cells without the limitation of antigen specific receptor recognition. In addition to behaving as cytotoxic effector cells, NK cells unlike T cells are not thought to elicit graft versus host disease. The combination of these characteristics makes NK cells a powerful tool for adoptive cell therapy. Despite the promise of NK cell therapy, key hurdles in achieving significant clinical efficacy include both generating sufficient numbers of highly tumoricidal NK cells and maintaining the cytotoxic activity of these cells in vivo despite the immunosuppressive tumor microenvironment. Our lab and others have developed several feeder cell line-based expansion modules that robustly stimulate the ex vivo proliferation of NK cells. However, strategies to enhance and sustain the activity of NK cells once administered in vivo are still limited. In order to identify strategies to enhance the cytotoxic activity of NK cells, we developed a high-throughput small molecule screen (Figure 1A) that involved a calcein-based cytotoxicity assay of ex vivo expanded and treated NK cells against ovarian cancer cells (OVCAR-3). 20,000 compounds were screened and the screen was found to be highly robust (Z'>0.59). We identified 29 hits that led to at least a 25% increase in cytotoxicity as compared to DMSO control-treated NK cells. One of the most promising hits was the pan-ROCK inhibitor, Y-27632 that led to an 30% increase in NK killing of the OVCAR-3 cells. We validated that ROCK inhibition leads to enhanced NK cell cytotoxic activity using Y-27632 (Figure 1B) as well as other well-established ROCK inhibitors such as Fasudil using a flow cytometry based killing assay. Y-27632 increased NK cell cytotoxicity in a dose- and time- dependent manner. ROCK inhibition consistently led to ~10-25% increase in NK cell cytotoxic activity directed against a variety of ovarian (Figure 1C) and other solid tumor cell lines (Figure 1D). Interestingly, we found that the NK hyperactivation persists for up to 48hrs after washing off the drug that may enable ex vivo stimulation before NK cell infusion. Our preliminary results showed that ROCK inhibition activates PI3K-dependent Akt activation (Figure 1E). We hypothesize that ROCK inhibition restores Akt activation which may be critical for NK cell activating receptor pathways and our current investigations will test these hypotheses. ROCK inhibitors, such as Y-27632 and Fasudil have been utilized in both preclinical and clinical studies for a variety of diseases such as atherosclerosis, neurodegenerative disorders, and ocular diseases. However, the consequences of ROCK inhibition in NK cells has not been thoroughly investigated. Our work shows a promising novel strategy to significantly enhance NK cell therapy against cancer that has high translational potential. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paul D. Bates ◽  
Alexander L. Rakhmilevich ◽  
Monica M. Cho ◽  
Myriam N. Bouchlaka ◽  
Seema L. Rao ◽  
...  

Management for high-risk neuroblastoma (NBL) has included autologous hematopoietic stem cell transplant (HSCT) and anti-GD2 immunotherapy, but survival remains around 50%. The aim of this study was to determine if allogeneic HSCT could serve as a platform for inducing a graft-versus-tumor (GVT) effect against NBL with combination immunocytokine and NK cells in a murine model. Lethally irradiated C57BL/6 (B6) x A/J recipients were transplanted with B6 bone marrow on Day +0. On day +10, allogeneic HSCT recipients were challenged with NXS2, a GD2+ NBL. On days +14-16, mice were treated with the anti-GD2 immunocytokine hu14.18-IL2. In select groups, hu14.18-IL2 was combined with infusions of B6 NK cells activated with IL-15/IL-15Rα and CD137L ex vivo. Allogeneic HSCT alone was insufficient to control NXS2 tumor growth, but the addition of hu14.18-IL2 controlled tumor growth and improved survival. Adoptive transfer of ex vivo CD137L/IL-15/IL-15Rα activated NK cells with or without hu14.18-IL2 exacerbated lethality. CD137L/IL-15/IL-15Rα activated NK cells showed enhanced cytotoxicity and produced high levels of TNF-α in vitro, but induced cytokine release syndrome (CRS) in vivo. Infusing Perforin-/- CD137L/IL-15/IL-15Rα activated NK cells had no impact on GVT, whereas TNF-α-/- CD137L/IL-15/IL-15Rα activated NK cells improved GVT by decreasing peripheral effector cell subsets while preserving tumor-infiltrating lymphocytes. Depletion of Ly49H+ NK cells also improved GVT. Using allogeneic HSCT for NBL is a viable platform for immunocytokines and ex vivo activated NK cell infusions, but must be balanced with induction of CRS. Regulation of TNFα or activating NK subsets may be needed to improve GVT effects.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1363
Author(s):  
Elena V. Abakushina ◽  
Liubov I. Popova ◽  
Andrey A. Zamyatnin ◽  
Jens Werner ◽  
Nikolay V. Mikhailovsky ◽  
...  

In the last decade, an impressive advance was achieved in adoptive cell therapy (ACT), which has improved therapeutic potential and significant value in promising cancer treatment for patients. The ACT is based on the cell transfer of dendritic cells (DCs) and/or immune effector cells. DCs are often used as vaccine carriers or antigen-presenting cells (APCs) to prime naive T cells ex vivo or in vivo. Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are used as major tool effector cells for ACT. Despite the fact that NK cell immunotherapy is highly effective and promising against many cancer types, there are still some limitations, including insignificant infiltration, adverse conditions of the microenvironment, the immunosuppressive cellular populations, and the low cytotoxic activity in solid tumors. To overcome these difficulties, novel methods of NK cell isolation, expansion, and stimulation of cytotoxic activity should be designed. In this review, we discuss the basic characteristics of DC vaccines and NK cells as potential adoptive cell preparations in cancer therapy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1955-1955
Author(s):  
Sumithira Vasu ◽  
Nelli Bejanyan ◽  
Steven Devine ◽  
Elizabeth Krakow ◽  
Elizabeth Krakow ◽  
...  

Background and Rationale: Relapse remains the leading cause of treatment failure for patients with high-risk acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) undergoing allogeneic blood or marrow transplantation (BMT). Although relapse rates vary based on patient population, age, and conditioning intensity, relapse is experienced in at least 30-50% after conventional BMT in high-risk AML/MDS. Initial safety and post-BMT relapse risk reduction results are reported by investigators at MD Anderson Cancer Center in a phase I study of ex vivo-expanded, donor-derived, haploidentical natural killer (NK)-cell infusion in conjunction with haploBMT. Of 13 patients with high-risk myeloid malignancies treated with NK cells, no infusion reactions or dose-limiting toxicities occurred and only 1 patient, treated at the lowest dose of 1×105 cells/kg, relapsed (Ciurea, Blood 2017). This experience supports investigation of CSTD002, a product derived from haploidentical donor NK cells and expanded ex vivo using plasma membrane (PM21) nanoparticles bearing membrane-bound IL-21 and 4-1BBL. This study represents a public-private partnership between the sponsor (Kiadis Pharma) and the Blood and Marrow Transplant Clinical Trials Network (BMT CTN), leveraging existing National Institutes of Health-supported clinical trials infrastructure to conduct a complex cellular immunotherapy trial. We used contemporary, unpublished data from the Center for International Blood and Marrow Transplant Research registry to determine baseline relapse rates that informed the statistical design. Doses of NK cells expanded by a novel method and exceeding those previously achieved in most published studies will be given in the peri-transplant period to test the hypothesis that haploidentical NK cells can mediate an effective anti-leukemia response. Trial Design and Methods: BMT CTN 1803 is a phase II, single-arm, open-label, multicenter trial designed to investigate the safety and efficacy of CSTD002 for the treatment of patients with high-risk AML or MDS undergoing haploBMT. An initial safety run-in phase will precede enrollment into the full study of approximately 60 patients. Major inclusion criteria of patients and donors are listed in the Table. Peripheral blood will be drawn from the donor to start the NK-cell expansion approximately 5 weeks before the planned haploBMT. Patients will receive intravenous (IV) melphalan 140 mg/m2 (100 mg/m2 for patients ≥60 years old) on Day -7; fludarabine 40 mg/m2 IV on Days -7, -6, -5, and -4; and 2 Gy of total body irradiation on Day -3. Donor bone marrow will be harvested and given on Day 0. Three doses of CSTD002 will be administered IV on Days -2, +7, and +28, relative to the haploBMT. The recommended dose of CSTD002 for administration will be formulated at 1×108 NK cells/kg of recipient body weight. Graft-versus-host disease (GVHD) prophylaxis is post-transplantation cyclophosphamide with tacrolimus and mycophenolate mofetil. The primary endpoint is cumulative incidence of relapse at 1 year post haploBMT in patients receiving at least 1 infusion of CSTD002. Secondary endpoints are safety and tolerability of CSTD002; overall survival; non-relapse mortality; relapse-free survival; GVHD-free survival; cumulative incidence of acute GVHD and chronic GVHD; hematologic recovery; donor-cell engraftment; primary and secondary graft failure; overall incidence of toxicity; and cumulative incidence of infections including cytomegalovirus re-activation and symptomatic BK virus hemorrhagic cystitis. Exploratory endpoints are systemic immunosuppression-free survival; immune reconstitution at Days 28, 100, and 365 post haploBMT; proportion of patients with detectable minimal residual disease at Days 28 and 100 post haploBMT; feasibility of administering the planned CSTD002 doses; and impact of NK-cell alloreactivity on relapse and survival. Disclosures Vasu: Boehringer Ingelheim: Other: Travel support; Seattle Genetics: Other: Clinical trial support. Bejanyan:Kiadis Pharma: Other: advisory board. Devine:Kiadis Pharma: Other: Protocol development (via institution); Magenta Therapeutics: Other: Travel support for advisory board; My employer (National Marrow Donor Program) has equity interest in Magenta; Bristol Myers: Other: Grant for monitoring support & travel support. Krakow:Bellicum Pharmaceuticals: Research Funding; Highpass Bio: Research Funding; Magnolia Innovations: Other: Personal fees. Logan:Eisai: Other: Personal fees; Astellas: Other: Grant; Kiadis (formerly Cytosen): Other: Grant; Novartis: Other: Personal fees; Kite: Other: Grant. Luznik:Merck: Research Funding, Speakers Bureau; Genentech: Research Funding; AbbVie: Consultancy; WindMiL Therapeutics: Patents & Royalties: Patent holder. Barrett:Kiadis Pharma (formerly Cytosen): Other: Personal fees; Biologics Consulting Company: Other: Personal fees. Shan:Kiadis Pharma (formerly Cytosen): Employment. Champlin:Actinium: Consultancy; Johnson and Johnson: Consultancy; Sanofi-Genzyme: Research Funding.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A893-A893
Author(s):  
Laurent Gauthier ◽  
Angela Virone-Oddos ◽  
Angela Virone-Oddos ◽  
Jochen Beninga ◽  
Benjamin Rossi ◽  
...  

BackgroundThere is a clear need for targeted therapies to treat acute myeloid leukemia (AML), the most common acute leukemia in adults. CD123 (IL-3 receptor alpha chain) is an attractive target for AML treatment.1 However, cytotoxic antibody targeting CD123 proved insufficiently effective in a combination setting in phase II/III clinical trials.2 T-cell engagers targeting CD123 displayed some clinical efficacy but were often associated with cytokine release syndrome and neurotoxicity.3 Interest in the use of NK cells for therapeutic interventions has increased in recent years, as a potential safer alternative to T cells. Several NK-cell activating receptors, such as CD16a, NKG2D, and the natural cytotoxicity receptors NKp30 and NKp46, can be targeted to induce antitumor immunity. We previously reported the development of trifunctional NK-cell engagers (NKCEs) targeting a tumor antigen on cancer cells and co-engaging NKp46 and CD16a on NK cells.4MethodsWe report here the design, characterization and preclinical development of a novel trifunctional NK cell engager (NKCE) targeting CD123 on AML cells and engaging the activating receptors NKp46 and CD16a on NK cells. The CD123 NKCE therapeutic molecule was engineered with humanized antibodies targeting NKp464 and CD123.5 We compared CD123-NKCE and a cytotoxic ADCC-enhanced antibody (Ab) targeting CD123, in terms of antitumor activity in vitro, ex vivo and in vivo. Pharmacokinetic, pharmacodynamic and safety profile of CD123-NKCE were evaluated in non-human primate (NHP) studies.ResultsThe expression of the high affinity Fc gamma receptor CD64 on patient-derived AML cells inhibited the ADCC of the Ab targeting CD123 in vitro and ex vivo, but not the antitumor activity of CD123-NKCE. CD123-NKCE had potent antitumor activity against primary AML blasts and AML cell lines, promoted strong NK-cell activation and induced cytokine secretion only in the presence of AML target cells. Its antitumor activity in mouse model was greater than that of the comparator antibody. Moreover, CD123-NKCE had strong and prolonged pharmacodynamic effects in NHP when used at very low doses, was well-tolerated up to high 3 mg/kg dose and triggered only minor cytokine release.ConclusionsThe data for activity, safety, pharmacokinetics, and pharmacodynamics provided here demonstrate the superiority of CD123-NKCE over comparator cytotoxic antibody, in terms of antitumor activity in vitro, ex vivo, in vivo, and its favorable safety profile, as compared to T-cell therapies. These results constitute proof-of-principle for the efficacy of CD123-NKCE for controlling AML tumors in vivo, and provide consistent support for their clinical development.ReferencesEhninger A, Kramer M, Rollig C, et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J 2014;4:e218.Montesinos P, Gail J Roboz GJ, et al. Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: results from a multicenter, randomized, phase 2/3 study. Leukemia 2021;35(1):62–74.Uy GL, Aldoss I, Foster MC, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 2021;137(6):751–762.Gauthier L, Morel A, Anceriz N, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 2019;177(7):1701–13.Jin L, Lee EM, Ramshaw HS, et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 2009;5:31–42.


Sign in / Sign up

Export Citation Format

Share Document