scholarly journals Investigating Germline Predisposition to Clonal Hematopoiesis through Perturbation of a Variant-Harboring Enhancer of TET2

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3274-3274
Author(s):  
Tre D. Artis ◽  
Vijay G. Sankaran ◽  
Alexander G. Bick

Abstract Clonal hematopoiesis (CH) is the age-related expansion of hematopoietic stem and progenitor cells (HSPCs) due to acquired genetic changes and is associated with increased blood cancer risk. Despite considerable progress in understanding how specific acquired somatic mutations result in clonal expansion, we have a limited understanding of the role of germline mutations that also predispose to clonal expansion. Recent work has revealed a low frequency germline variant found exclusively in individuals of African diasporic descent that confers a 2.4-fold increased risk for CH (Bick et al., Nature, 2020). Remarkably, this variant is found within a putative enhancer of the TET2 gene, which encodes a key epigenetic modifier that catalyzes conversion of methylated cytosines to 5-hydroxymethylcytosine, thereby facilitating DNA demethylation. However, the precise role of this enhancer variant in altering TET2 activity and human hematopoiesis is poorly understood. We specifically hypothesize that this germline variant may alter TET2 activity subtly in hematopoietic stem cells (HSCs) to modify DNA methylation at a number of HSC regulatory elements and subsequently gene expression, which are likely mediated through selective changes in transcription factor (TF) activity. To explore this hypothesis, we performed deletions of the putative TET2 enhancer in adult CD34 +HSPCs using CRISPR/Cas9 editing through the introduction of Cas9 ribonucleoproteins. Following deletion of this enhancer, we observed a moderate increase in the total number of phenotypic long-term reconstituting hematopoietic stem cells (LT-HSCs; as marked by CD34 +CD45RA -CD90 +CD201 +CD133 +CD49c +) and in primary colony formation unit (CFU) assays compared to control editing (AAVS1 edited). Interestingly, the enhancer deletion did not cause an increase in the number of phenotypic short-term HSCs (CD34 +CD45RA -CD90 +CD201 +CD133 +CD49c -), HSPC proliferation, or secondary CFU plating. Assessment of the deletion stability showed selection against enhancer deleted cells during myeloid differentiation, however some cells could still be identified after more than 30 days following editing. This result suggests that the enhancer likely functions in a selective manner within HSCs. The overall phenotypes we observe suggest some overlap, but distinct presentations in comparison to concomitant TET2 coding disruption that we have also performed. Ongoing studies seek to use these promising phenotypic results to define changes in accessible chromatin and DNA methylation states in this isogenic perturbed model. This will enable insights into the specific enhancers altered through this perturbation and we plan to examine TF motif alterations at these regulatory elements. While the perturbation performed may represent a larger perturbation than is seen through the naturally-occurring variant, this provides a platform for defining how this CH predisposition arises with a larger impact perturbation. Use of base editors in a similar manner should enable more selective perturbations, as well. Together, these results will further reveal potential germline genetic and molecular origins of CH and further explain broader mechanisms of TET2 function and the importance of proper DNA methylation during human hematopoiesis that may provide clinical relevance for the potential prevention of blood cancers. Disclosures Sankaran: Cellarity: Consultancy; Forma: Consultancy; Novartis: Consultancy; Ensoma: Consultancy; Branch Biosciences: Consultancy.

Blood ◽  
2004 ◽  
Vol 103 (11) ◽  
pp. 4084-4092 ◽  
Author(s):  
Claudia Orelio ◽  
Kirsty N. Harvey ◽  
Colin Miles ◽  
Robert A. J. Oostendorp ◽  
Karin van der Horn ◽  
...  

Abstract Apoptosis is an essential process in embryonic tissue remodeling and adult tissue homeostasis. Within the adult hematopoietic system, it allows for tight regulation of hematopoietic cell subsets. Previously, it was shown that B-cell leukemia 2 (Bcl-2) overexpression in the adult increases the viability and activity of hematopoietic cells under normal and/or stressful conditions. However, a role for apoptosis in the embryonic hematopoietic system has not yet been established. Since the first hematopoietic stem cells (HSCs) are generated within the aortagonad-mesonephros (AGM; an actively remodeling tissue) region beginning at embryonic day 10.5, we examined this tissue for expression of apoptosis-related genes and ongoing apoptosis. Here, we show expression of several proapoptotic and antiapoptotic genes in the AGM. We also generated transgenic mice overexpressing Bcl-2 under the control of the transcriptional regulatory elements of the HSC marker stem cell antigen-1 (Sca-1), to test for the role of cell survival in the regulation of AGM HSCs. We provide evidence for increased numbers and viability of Sca-1+ cells in the AGM and subdissected midgestation aortas, the site where HSCs are localized. Most important, our in vivo transplantation data show that Bcl-2 overexpression increases AGM and fetal liver HSC activity, strongly suggesting that apoptosis plays a role in HSC development.


2015 ◽  
Vol 39 (10) ◽  
pp. 1099-1110 ◽  
Author(s):  
Iordanis Pelagiadis ◽  
Eftichia Stiakaki ◽  
Christianna Choulaki ◽  
Maria Kalmanti ◽  
Helen Dimitriou

Author(s):  
Laura Mosteo ◽  
Joanna Storer ◽  
Kiran Batta ◽  
Emma J. Searle ◽  
Delfim Duarte ◽  
...  

Hematopoietic stem cells interact with bone marrow niches, including highly specialized blood vessels. Recent studies have revealed the phenotypic and functional heterogeneity of bone marrow endothelial cells. This has facilitated the analysis of the vascular microenvironment in steady state and malignant hematopoiesis. In this review, we provide an overview of the bone marrow microenvironment, focusing on refined analyses of the marrow vascular compartment performed in mouse studies. We also discuss the emerging role of the vascular niche in “inflamm-aging” and clonal hematopoiesis, and how the endothelial microenvironment influences, supports and interacts with hematopoietic cells in acute myeloid leukemia and myelodysplastic syndromes, as exemplar states of malignant myelopoiesis. Finally, we provide an overview of strategies for modulating these bidirectional interactions to therapeutic effect in myeloid malignancies.


2021 ◽  
Author(s):  
Bettina Nadorp ◽  
Giacomo Grillo ◽  
Aditi Qamra ◽  
Amanda Mitchell ◽  
Christopher Arlidge ◽  
...  

AbstractDespite most acute myeloid leukemia (AML) patients achieving complete remission after induction chemotherapy, two thirds of patients will relapse with fatal disease within 5 years. AML is organized as a cellular hierarchy sustained by leukemia stem cells (LSC) at the apex, with LSC properties directly linked to tumor progression, therapy failure and disease relapse 1–5. Despite the central role of LSC in poor patient outcomes, little is known of the genetic determinants of their stemness properties 6–8. Although much AML research focuses on mutational processes and their impact on gene expression programs, the genetic determinants of cell state properties including stemness expand beyond mutations, relying on the genetic architecture captured in the chromatin of each cell 9–11. As LSCs share many functional and molecular properties with normal hematopoietic stem cells (HSC), we identified genetic determinants of primitive populations enriched for LSCs and HSCs in comparison with their downstream mature progeny by investigating their chromatin accessibility. Our work reveals how distinct transposable element (TE) subfamilies are used in primitive versus mature populations, functioning as docking sites for stem cell-associated regulators of genome topology, including CTCF, or lineage-specific transcription regulators in primitive and mature populations, respectively. We further show how TE subfamilies accessible in LSCs define docking sites for several oncogenic drivers in AML, namely FLI1, LYL1 and MEIS1. Using chromatin accessibility profiles from a cohort of AML patients, we further show the clinical utility of our TE accessibility-based LSCTE121 scoring scheme to identify patients with high rates of relapse. Collectively, our work reveals how different accessible TE subfamilies serve as genetic determinants of stemness properties in normal and leukemic hematopoietic stem cells.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Yoshimitsu Yura ◽  
Emiri Miura-Yura ◽  
Kenneth Walsh

Background: Therapy-related clonal hematopoiesis in cancer patients is typically associated with somatic mutations in hematopoietic cell genes that encode regulators of the DNA-damage response (DDR) pathway. The Protein Phosphatase Mg2+/Mn2+ Dependent 1D ( PPM1D ) gene is the most frequently mutated DDR gene associated with therapy-related clonal hematopoiesis. While epidemiological evidence suggests an association between therapy-related clonal hematopoiesis and cardiovascular disease in cancer patients, causal and mechanistic relationships have never been evaluated in an experimental system. Methods: To test whether hematopoietic cell mutations in PPM1D can increase the susceptibility to cardiac stress, we evaluated cardiac dysfunction in response to angiotensin II infusion in a mouse model where clonal-hematopoiesis-associated mutations in Ppm1d were produced by CRISPR-Cas9 technology. Results: Mice transplanted with hematopoietic stem cells containing clinically relevant mutations in exon 6 of Ppm1d exhibited augmented cardiac remodeling following the continuous infusion of angiotensin II. Ppm1d -mutated macrophages showed impairments in the DDR pathway and had an augmented proinflammatory profile. Mice transplanted with Ppm1d mutated cells exhibited elevated IL-1β in the stressed myocardium, and bone marrow derived macrophages produced more IL-1β in response to LPS stimulation. The administration of an NLRP3 inflammasome inhibitor to mice reversed the cardiac phenotype induced by the Ppm1d -mutated hematopoietic stem cells under conditions of Angiotensin II-induced stress. Conclusions: A mouse model of Ppm1d -mediated clonal hematopoiesis was more susceptible to cardiac stress following of angiotensin II infusion. Mechanistically, disruption of the DDR pathway led to elevations in inflammatory cytokine production, and the NLRP3 inflammasome was shown to be essential for this augmented cardiac stress response. These data indicate that therapy-related clonal hematopoiesis involving mutations in PPM1D could contribute to the cardiac dysfunction observed in cancer survivors.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3758-3779 ◽  
Author(s):  
N Uchida ◽  
HL Aguila ◽  
WH Fleming ◽  
L Jerabek ◽  
IL Weissman

Abstract Hematopoietic stem cells (HSCs) are believed to play a critical role in the sustained repopulation of all blood cells after bone marrow transplantation (BMT). However, understanding the role of HSCs versus other hematopoietic cells in the quantitative reconstitution of various blood cell types has awaited methods to isolate HSCs. A candidate population of mouse HSCs, Thy-1.1lo Lin-Sca-1+ cells, was isolated several years ago and, recently, this population has been shown to be the only population of BM cells that contains HSCs in C57BL/Ka-Thy-1.1 mice. As few as 100 of these cells can radioprotect 95% to 100% of irradiated mice, resulting long-term multilineage reconstitution. In this study, we examined the reconstitution potential of irradiated mice transplanted with purified Thy-1.1lo Lin-Sca-1+ BM cells. Donor-derived peripheral blood (PB) white blood cells were detected as early as day 9 or 10 when 100 to 1,000 Thy-1.1lo Lin-Sca-1+ cells were used, with minor dose-dependent differences. The reappearance of platelets by day 14 and thereafter was also seen at all HSC doses (100 to 1,000 cells), with a slight dose-dependence. All studied HSC doses also allowed RBC levels to recover, although at the 100 cell dose a delay in hematocrit recovery was observed at day 14. When irradiated mice were transplanted with 500 Thy-1.1lo Lin-Sca-1+ cells compared with 1 x 10(6) BM cells (the equivalent amount of cells that contain 500 Thy-1.1lo Lin-Sca-1+ cells as well as progenitor and mature cells), very little difference in the kinetics of recovery of PB, white blood cells, platelets, and hematocrit was observed. Surprisingly, even when 200 Thy1.1lo Lin-Sca- 1+ cells were mixed with 4 x 10(5) Sca-1- BM cells in a competitive repopulation assay, most of the early (days 11 and 14) PB myeloid cells were derived from the HSC genotype, indicating the superiority of the Thy-1.1lo Lin-Sca-1+ cells over Sca-1- cells even in the early phases of myeloid reconstitution. Within the Thy-1.1lo Lin-Sca-1+ population, the Rhodamine 123 (Rh123)hi subset dominates in PB myeloid reconstitution at 10 to 14 days, only to be overtaken by the Rh123lo subset at 3 weeks and thereafter. These findings indicate that HSCs can account for the early phase of hematopoietic recovery, as well as sustained hematopoiesis, and raise questions about the role of non-HSC BM populations in the setting of BMT.


Sign in / Sign up

Export Citation Format

Share Document